
VOSS Automate
API Guide

Release 24.1

Jul 15, 2024

Legal Information

• Copyright © 2024 VisionOSS Limited.
All rights reserved.

• This information is confidential. If received in error, it must be returned to VisionOSS ("VOSS"). Copyright in all
documents originated by VOSS rests in VOSS. No portion may be reproduced by any process without prior written
permission. VOSS does not guarantee that this document is technically correct or complete. VOSS accepts no
liability for any loss (however caused) sustained as a result of any error or omission in the document.

DOCUMENT ID: 20240715220916

i

Contents

1 Overview 1
1.1 Introduction . 1
1.2 Anatomy of an API Request . 3
1.3 Anatomy of an API Response . 25

2 Using the API 37
2.1 Developer Guidelines . 37
2.2 Workflow Tasks . 37
2.3 Developer Tools . 39

3 Handling API Fault Responses 40
3.1 Fault Responses . 40
3.2 Error Messages . 40

4 Tool APIs 58
4.1 Introduction to Tool APIs . 58
4.2 Search and Search Result Export . 58
4.3 Bulk Load API . 60
4.4 Move and Bulk Move . 63
4.5 Data Extract . 64
4.6 Custom Workflows . 66

5 Transactions 68
5.1 List Transactions . 68
5.2 Get Instance Transactions . 68
5.3 Poll Transactions . 69
5.4 Replay Transactions . 69
5.5 Edit and Replay Transactions . 70
5.6 Sub Transactions . 70
5.7 Log Transactions . 70
5.8 Transaction Choices . 70
5.9 Transaction Filters . 71

6 API Examples 75
6.1 API Examples Overview and Conventions . 75
6.2 POST . 75
6.3 GET . 77
6.4 PUT . 79
6.5 DELETE . 81
6.6 Bulk Load Example . 83
6.7 Export Example . 85
6.8 Example Transaction . 87

ii

7 Backward Compatibility 90
7.1 API Backward Compatibility and Import . 90

8 General API Reference 91
8.1 Using the API Reference . 91
8.2 API Schema . 93
8.3 Notifications . 93
8.4 Meta data . 93
8.5 Generic Actions . 97
8.6 Custom Device Connection Actions . 112
8.7 Custom Device Actions . 113
8.8 Other elements . 117

9 OpenAPI Examples 121
9.1 Getting Started . 121
9.2 CUCM OpenAPI Examples . 123

Index 168

iii

1. Overview

1.1. Introduction

1.1.1. API Introduction

The secure and comprehensive API provides a single point of integration with multiple business systems
that require information and use functionality exposed by the product, the underlying managed network and
related products that are enabled by the core.

The REST-based API covers all functionality provided by the product and includes a comprehensive JSON-
based schema with schema rules, metadata and data that simplifies integration.

Refer to the API Guide for more information on integrating with the VOSS Automate API.

For a reference of the schema and the operations applicable for each resource in the system, refer to the
relevant API Reference. Resources are classified by the type of model in the system (data, device, domain,
relation or view), for example data/AccessProfile, device/cucm/Phone, and so on. Depending on the
installed modules and their feature packages, the API of feature package models may be available, for
example relation/Subscriber, view/QuickSubscriber, and so on.

The product is fully integrated with external LDAP directories and SAML identity providers, allowing users
to utilize existing identity management system to provide seamless access to portals developed using the
product.

1.1.2. API System Concepts

To understand the API, it’s important to understand two basic concepts

• Models

• Hierarchy

“Model” describes the types of JSON objects fulfilling purposes such as defining data structures, containing
data, defining GUI forms, mapping data from devices or other models.

The system employs the following types of models:

• Data Models

• Device Models

• Domain Models

• Relations

1

1.1. Introduction

• Views

Data in the system is represented using Data models and Device models.

Device models are generated from the application API of entities that are provisioned on devices.

Domain models, relations and views wrap the Data or Device models by means of references to them.

Data models can be created and are stored in the database. Data models contain a JSON schema/metadata
for the entities exposed by the underlying database. The schemas for the data models are stored in the
database and represent the structure that instances of the data model conforms to.

Device models interface with devices and services on the system. For example:

• Unified CM device models interface with the Call Manager’s AXL SOAP API.

• CUC device models interface with Unity Connection’s RESTful API.

The ability to rapidly develop and deploy new device interfaces provides an extensible mechanism to add
support for additional provisioning tasks or additional southbound integration into other business systems.
Domain models act as “containers” of other data-, device- and domain models along with provisioning
workflows to represent the management of a created feature.

Relations do not store data on the system. Instead, they relate groups of resource types such as device
models, data models or other domain models.

Views provide a mechanism to define an arbitrary schema, which can be used to define a user input screen.

1.1.3. Hierarchy

A system hierarchy node is present at first startup of the system.

Each entity attached to the hierarchy has an address, represented by a pkid, which is defined as a standard
URI.

Hierarchies can be created under the system hierarchy node, because the hierarchy is exposed as a RESTful
API. API calls are made with reference to the hierarchy.

1.1.4. Basic REST

The system uses a REST (Representational State Transfer) API.

For more information about this type of API, see http://en.wikipedia.org/wiki/Representational_state_transfer

1.1.5. API Traversal

The system represents the reference of an entity in the system as Hypermedia as the Engine of Application
State (HATEOS). Each reference position is represented by an object pair pkid and href.

A client integrates with VOSS Automate entirely through hypermedia dynamically provided by the VOSS
Automate application and does not need any prior knowledge about how to interact with the system other
than a generic understanding of hypermedia. This means that no WADL is provided. This also means that the
client and VOSS Automate can be decoupled in a way that allows VOSS Automate to evolve independently.

A client enters the VOSS Automate through a simple fixed URL. All future actions the client may take are
discovered within resource representations returned from the server

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

2

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/HATEOAS
http://en.wikipedia.org/wiki/HATEOAS
http://en.wikipedia.org/wiki/Web_Application_Description_Language

1.2. Anatomy of an API Request

The detailed URL tree endpoint information is available in the relevant API Reference Guides for the core
and features.

This response emulates the HierarchyNode list response, and utilizes the parent and children in the meta
references section of the response, as discussed in Meta Data References.

1.1.6. Request and Response Patterns

The request and response patterns between service requester and VOSS Automate is summarized below.
For details, refer to the topics in the chapter called Anatomy of an API Response.

For synchronous operations:

1. Service Requestor sends a accessor (e.g. Get, List) request with request parameters to VOSS
Automate.

2. Either:

a. VOSS Automate responds synchronously with a Get/List response.

b. VOSS Automate responds synchronously with a fault response.

For asynchronous operations:

1. Service Requestor sends a mutator (e.g. Add, Modify, Delete) request with parameters.

2. The Add/Update/Delete transaction is scheduled on the VOSS Automate transaction queue with a
transactionID.

3. VOSS Automate responds synchronously with either:

a. An Add/Update/Delete response and a transactionID.

b. A fault response.

4. The external system either:

a. Polls the system to retrieve the status of the transaction as needed, or

b. Specifies a callback URL (with an optional username and password if the interface is secured
(recommended)) and waits for a asynchronous transaction status callback (recommended).

When the transaction completes, VOSS Automate sends an async transaction status callback
message to the callback URL specified in the request.

1.2. Anatomy of an API Request

1.2.1. General Structure of the API

The VOSS Automate API accesses system resources or tools.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

3

1.2. Anatomy of an API Request

Resources

The general structure of an API URL for accessing a system resource (an endpoint) is:

Method https://servername/api/Resource/Action/?Parameters

Where:

Method

[GET|POST|DELETE|PUT|PATCH]

Servername

The installation server determines the base URL, e.g. https://servername. In a cluster environment, this is
the address of the web proxy node. Refer to the Install Guide for cluster deployment information.

api

A static string in the URL that is a part of the endpoint.

Resource

(str:modeltype/str:modelname)[/pkid]

Refer to the relevant API Reference guides for a list of supported resources.

Action

For a complete list of actions supported for resources in the system and for a list of custom actions, refer to
the relevant API Reference Guides.

Parameters

[(str:api parameter)[&(str:api parameter)...]]

The HTTP methods and parameters are described in relevant sections. The different resources supported in
the system are described in the API Reference Guides.

Tools

The general structure of the URL structure for Tools is, for example:

[GET|POST] /api/tool/(str:tool_name)/

1.2.2. Format

The system API supports the following format HTTP headers when handling and responding to requests.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

4

1.2. Anatomy of an API Request

Field
Name

Description Value

Content-
Type

The format type of the body of the request (used with POST and
PUT requests)

application/json

Content-
Type

The format type of the body of the request (used with PATCH
requests)

application/json-
patch+json

Accept Content-Types that are acceptable in response application/json

1.2.3. Authentication

The system controls access to its service through HTTP basic authentication. The technique is defined in
section 11.1 of RFC1945, which is simple to implement, and uses standard HTTP headers.

The HTTP Basic Access Authentication requires authorization credentials in the form of a user name and
password before granting access to resources in the system. The username and password are passed as
Base64 encoded text in the header of API requests.

The HTTP header format for authentication is defined in the table below.

Field Name Description Value

Authorization Basic authentication is supported. Basic [Base64 encoded credentials]

Example:

The Base64 encoded credentials for user name of joe and a password of bloggs.

For example, from a command line (note the removal of the new line in the echo command):

$ echo -n "joe:bloggs" | base64
am9lOmJsb2dncw==

the header will be:

Authorization: Basic am9lOmJsb2dncw==

For example, using curl:

curl -k -H "Authorization: Basic am9lOmJsb2dncw=="
'https://hostname/api/data/MyModel/'

It is required that all requests be conducted over a secure session, such as HTTPS or SSL.

A VOSS Automate self-signed certificate needs to be installed into a local trust store of the client application.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

5

1.2. Anatomy of an API Request

1.2.4. Authorization

A user’s access profile determines whether they can perform a given operation on a model. The user can
also only access items below the position they are defined in the hierarchy.

1.2.5. HTTP Methods

The API supports the following HTTP methods:

GET

• Used to query a resource or a list of resource.

POST

• Used to create a new resource.

• The data is submitted as a JSON object.

• The return value is the pkid of the resource.

PUT

• Used to update the data of a resource.

• The resource URL includes the resource pkid.

• The data to be updated is submitted as a JSON object.

PATCH

• Used to update the data of a resource.

• PATCH request body in JSON Patch format

• Content-Type is “application/json-patch+json”

• JSON Patch: http://tools.ietf.org/html/rfc6902

DELETE

• Used to delete a resource.

• The resource URL includes the resource pkid.

• The DELETE method can also be used to delete multiple resources on one request as a “bulk delete”.

1.2.6. PUT Versus PATCH

For PUT methods the resource data is replaced with the data specified in the request. All fields of the
resource are replaced with the fields in the request.

This means that:

• Fields not present in the request that are present in the resource will be dropped from the resource.

• Fields present in the request that are not present in the resource will be appended to the resource.

• The data of fields present in the request is used to update fields that already exist in the resource.

PATCH methods operate in two modes depending on the content type:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

6

http://tools.ietf.org/html/rfc6902

1.2. Anatomy of an API Request

• Content type: application/json The values of data fields present in the request is used to update
the corresponding resource fields.

This means:

– Fields present in the request but not in the resource are appended to the resource.

– The value of each field that is already present in the resource is updated from the request data.

– Field values that are set to null in the request is dropped from the resource.

– Fields that are present in the resource but not in the request are left untouched.

• Content type: application/json-patch+json

Existing resource data is patched according to RFC6902.

Modifying Data Fields

• To drop the field from a data model, specify null as the parameter value (i.e. {"field": null}).

• To blank out a string value set the parameter value to an empty string (i.e. {"field":""}).

1.2.7. API Parameters

Note: VOSS Automate will not support API Backward Compatibility from release 21.1 and future releases.
From release 21.1 forward, the following must be removed from API requests.

• API parameter: api_version=<version_number>

• Request header: X-Version:<version_number>

The hierarchy parameter is required for each API request and can be specified as any of the following:

• the pkid of the hierarchy node in the form of a UUID, for example 1c055772c0deab00da595101

• in dot notation, for example ProviderName.CustomerName.LocationName

To obtain the pkid of a hierarchy node, refer to the path element in the metadata of data/HierarchyNode
resource.

Note: For the purposes of simplifying the documentation, the hierarchy API parameter
&hierarchy=[hierarchy] is not included in all examples in this document. Specifying the hierarchy is how-
ever required in all API requests where the instance pkid is not referenced. In the examples, [hierarchy] is
substituted with the caller’s hierarchy id.

Format

The system API supports the following request parameters for data format when handling requests.

Key Description Value

format The format type of the body of the request json

A request of the following format returns HTML:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

7

1.2. Anatomy of an API Request

GET /api/(str:model_type)/(str:model_name)/help/

A parameter &format=json is not displayed in all examples, but it is required for all requests unless a different
format is specifically stated.

Configuration Template and Template Name

The Configuration Template can be specified in the POST request parameters for a resource as follows:

POST /api/(str:model_type)/(str:model_name)/&template_name=[CFG name]

Key Description Value

template Apply the Configuration Template with pkid [CFG pkid] to the
payload of the POST request.

[CFG pkid]

template_name Apply the Configuration Template with name [CFG name] to the
payload of the POST request.

[CFG name]

Field Display Policy

Field Display Policy can be specified in the GET request parameters for a resource as follows:

GET /api/(str:model_type)/(str:model_name)/add/

Key Description Value

policy Return a model form schema where the Field Display Policy with
pkid [FDP pkid] is applied to it. Use policy with the parameters
schema and format=json.

[FDP pkid]

policy_name Return a model form schema where the Field Display Policy with
name [FDP name] is applied to it. Use policy with the parameters
schema and format=json.

[FDP name]

Cached

The API can return cached data from the system or data from devices, using the following format:

GET /api/(str:model_type)/(str:model_name)/[pkid]/

Key Description Value Default

cached System will respond with resource information where
the data was obtained from cache. (Functionally only ap-
plicable to device models and domain models containing
device models)

true, false true

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

8

1.2. Anatomy of an API Request

Note: From 11.5.2 onwards, the API URL cached parameter on the Subscriber list (/api/relation/
Subscriber/) will not be honoured. Data presented to the API will always display cached information and
will not refresh the information from the device during a list query with cached=false.

Resource instance

To identify a single resource, the API call contains the single resource (pkid) using the following format:

GET /api/(str:model_type)/(str:model_name)/(pkid)/

Schema and Schema Rules

To obtain the schema or schema rules of a resource, use the following parameters to an API request:

GET /api/(str:model_type)/(str:model_name)/?
hierarchy=[hierarchy]&schema=true&schema_rules=true

Key Description Value

schema Return the schema of the resource. Use with the parameter
format=json

true, false

schema_rules Return the GUI Rules and Field Display Policies of the resource if
available. Use with the parameters format=json and schema to see
schema_rules in the response.

true, false

List pagination

The system API supports the following two tables of API request parameters when specifying the format of
and structure of the resources to list.

• Pagination parameters

Key Description Value Default

skip The list resource offset. If the Range request header
is used, it will override this parameter.

0

limit The maximum number of resources returned. The
maximum value is 2000. If the Range request header
is used, it will override this parameter.

1-2000 50

count Specify if the number of resources should be counted.
If false, the pagination object in the response shows
the total as 0, so no total is calculated and the API
performance is improved.

true, false true

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

9

1.2. Anatomy of an API Request

List format

• List format parameters

Key Description Value Default

order_by The summary attribute field to sort on First summary
attribute

direction The direction of the summary attribute field sort
(asc:ascending, desc: descending)

asc, desc asc

summary Only summary data is returned in the data object true, false true

traversal The direction of the resource lookup of resources
tied to the hierarchy tree from the hierarchy node
provided as parameter

up, down, lo-
cal

down

Note: From 11.5.2 onwards for api/relation/Subscriber:

• The API URL summary parameter on the Subscriber list (/api/relation/Subscriber/) will not be
honoured. Data presented to the API will always display summarized information and will not display
full CUCM User data with summary=false.

• The API parameter traversal=up on the Subscriber list (/api/relation/Subscriber/) will not be
honoured. Data presented to the API will default to display resources down the hierarchy tree with
traversal=up.

Filter

Models that have the list action defined in their schema can also be filtered by using a number of URL filter
parameters in parameter sets of four key-value pairs.

Filters also apply to the api/tool/Transaction/ endpoint, which has additional filter functionality to filter by
transaction ID. Refer to the topic on Filter Transactions.

These parameters can be added in addition to the parameters available to list resources as in the topic on
API Parameters.

A single filter query can contain one or more sets of the following four parameters:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

10

1.2. Anatomy of an API Request

Key Description Value Default

filter_field The model attribute name to filter. The name of the at-
tribute in the list of
summary_attrs in
the model schema.

filter_condition The matching operator for the filter_field.
If equals is used in a condition, then other
filter sets are ignored.

One of the condi-
tions below, applied
to a filter_text
string value.

• startswith
• endswith
• contains
• notcontain
• equals
• notequal

contains

filter_text A text string applied to the filter_field by a
filter_condition.

Plain text

ignore_case Additional specifier applied to the case of the
filter_text.

Either true or
false.

true

Example showing a single filter set:

GET /api/(str:model_type)/(str:model_name)/?
hierarchy=[hierarchy]
&filter_field=[attribute_name]
&filter_condition=startswith
&filter_text=John
&ignore_case=false

Note: For relation/Subscriber, the list of filter_field values are restricted to:

• userid

• firstname

• lastname

• mailid

• hierarchy_friendly_name

• device

• extension_mobility

• phone

If more than one filter set is used, all similar keys are grouped, so that the key position indicates the filter set.
For example:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

11

1.2. Anatomy of an API Request

GET /api/(str:model_type)/(str:model_name)/?
hierarchy=[hierarchy]
&filter_field=[attribute_name]
&filter_field=[attribute_name2]
&filter_condition=startswith
&filter_condition=endswith
&filter_text=John
&filter_text=an
&ignore_case=false
&ignore_case=false

The two filter sets in this example, are:

• &filter_field=[attribute_name]

• &filter_condition=startswith

• &filter_text=John

• &ignore_case=false

and

• &filter_field=[attribute_name2]

• &filter_condition=endswith

• &filter_text=th

• &ignore_case=false

Synchronous and Asynchronous

It is possible to submit mutator type operations with API parameters to complete synchronously, in which
case the synchronous response to the transaction either includes the status of the transaction or a fault
response. This is not recommended as long-running transactions or a busy system may exceed the HTTP
timeout.

This is only available for models where the actions in the meta data contains support_async.

Key Description Value Default

nowait Controls the API synchronous or asynchronous behavior
for requests resulting in transactions. Please refer to
the support_async property in the model schema under
meta -> actions, for an indication of support per action.

true, false false

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

12

1.2. Anatomy of an API Request

Tags

To manage (add, remove) tags of a resource instance where the resource operations permissions allows tag
management.

Key Description Value

tag
• Applies to resource instance

(<instance_pkid>)
• Uses +tag in URL
• Resource operation enables Tag
• API call is PATCH on resource instance

<tag_value>
See below.

<tag_value> can be:

1. a tag name (no capital letters if tag should be searchable).

2. __CLEAR_TAG__<tag_name> to remove a tag <tag_name>.

3. __CLEAR_ALL_TAGS__ to remove all tags.

PATCH /api/(str:model_type)/(str:model_name)/<instance_pkid>/+tag/?
hierarchy=[hierarchy]
&tag=<tag_value>

Note: More than one tag parameter may be used, for example &tag=tag_one&tag=tag_two...

Example JSON export of meta object of an instance showing:

• tags: “mytag”, “another_tag”

• version_tag: “1.2”

"meta": {
"tags": [

"mytag",
"another_tag"

],
"pkid": "5ad5e4e3affa9343e4d9b140",
"schema_version": "0.2.2",
"hierarchy": "sys",
"version_tag": "1.2",
"model_type": "data/GeneralHelp"

}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

13

1.2. Anatomy of an API Request

Version Tags

To manage (add, remove) tags of a resource instance where the resource operations permissions allows tag
management.

Key Description Value

version_tag
• Applies to resource instance (<instance_pkid>)
• Uses +tag_version in URL
• Resource operation enables Version Tag
• API call is PATCH on resource instance

<version_tag_value>
for example
1.1, 1.2 ..

PATCH /api/(str:model_type)/(str:model_name)/<instance_pkid>/+tag_version/?
hierarchy=[hierarchy]
&version_tag=<version_tag_value>

Example JSON export of meta object of an instance showing:

• tags: “mytag”, “another_tag”

• version_tag: “1.2”

"meta": {
"tags": [

"mytag",
"another_tag"

],
"pkid": "5ad5e4e3affa9343e4d9b140",
"schema_version": "0.2.2",
"hierarchy": "sys",
"version_tag": "1.2",
"model_type": "data/GeneralHelp"

}

1.2.8. Filter Parameters for Choices

For the context in which the filter parameter are used, refer to the Choices topic on the /choices/ endpoint.

Format:

GET http://<server_address>/api/<resource_type>/<resource_name>/choices/
?hierarchy=[hierarchy]
&format=json
&<filter_parameters>

Response data of the /choices/ endpoint without filter parameters is a list of value-title pairs of the business
keys. This can be modified with filter parameters.

Example without <filter_parameters>:

• Request

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

14

1.2. Anatomy of an API Request

GET http://<server_address>/api/data/Countries/choices/
?hierarchy=[hierarchy]
&format=json

• Response

HTTP 200 OK
Vary: Accept
X-Request-ID: 9bcd77b4cd27dccd0f18a1d8d22e7ddab85aa848
Content-Type: text/html; charset=utf-8
Allow: GET, HEAD, OPTIONS
Response-Content:
{

pagination : {
direction : asc,
maximum_limit : 2000,
skip : 0,
limit : 0,
total_limit : ,
total : 37

},
meta : {

query : /api/data/Countries/choices/,
references : [

{
pkid : 5a16c3c68963f91b84baf357,
href : /api/data/Countries/5a16c3c68963f91b84baf357/

},
...

]
},
choices : [

{
value : ["Australia", "AUS", "hcs"],
title : ["Australia", "AUS", "hcs"]

},
...

Filter parameters available to modify the response:

• field: specifies the field in the business key to return as title and value, for example adding the
parameter below

&field=iso_country_code

would return:

choices : [
{

value : ["AUS"],
title : ["AUS"]

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

15

1.2. Anatomy of an API Request

(continued from previous page)

},
...

• choice_title: specifies the field of the business key to be the title value, for example adding the
parameter below

&field=iso_country_code
&choice_title=country_name

would return:

choices : [
{

value : ["AUS"],
title : ["Australia"]

},
...

• title: specifies the value of the field parameter to filter on, for example adding the parameter below

&field=iso_country_code
&title=BHR
&choice_title=country_name

would return:

choices : [
{

value : ["BHR"],
title : ["Bahrain"]

},
...

Note that the title parameter matches on the start of the value.

• filter_condition: For an exact match, the &filter_condition=equals parameter can be added,
for example:

&filter_condition=equals
&field=iso_country_code
&choice_title=country_name
&title=N

returns no value:

choices []

Without filter_condition=equals, in other words, with just:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

16

1.2. Anatomy of an API Request

&field=iso_country_code
&choice_title=country_name
&title=N

returns:

choices": [
{"value": "NLD", "title": "Netherlands"},
{"value": "NZL", "title": "New Zealand"}]

• filter_field and filter_text: the parameters are a field with value to filter on that is not the field
parameter, for example to list only countries with emergency_access_prefix:911:

&field=iso_country_code
&choice_title=country_name
&filter_condition=equals
&filter_field=emergency_access_prefix
&filter_text=911

returns:

choices":[
{"value":"CAN","title":"Canada"},
{"value":"USA","title":"United States of America"}]

1.2.9. API Request Headers

Note: VOSS Automate will not support API Backward Compatibility from release 21.1 and future releases.
From release 21.1 forward, the following must be removed from API requests.

• API parameter: api_version=<version_number>

• Request header: X-Version:<version_number>

API Headers are available for pagination of choices and macro results in an API call.

The headers are X-range and Range, with the starting value as 0. These override and can be used instead
of the skip and limit API parameters.

For example, the following examples return the same results:

GET /api/tool/Macro/?method=evaluate
&hierarchy=[hierarchy]
&input={{fn.lines}}
&skip=0
&limit=6

GET /api/tool/Macro/?method=evaluate

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

17

1.2. Anatomy of an API Request

(continued from previous page)

&hierarchy=[hierarchy]
&input={{fn.lines}}

Request headers:

X-Range: items=0-5
Range: items=0-5

If the request is items=0-199 (for 200 items) and there are more results, the response will show:

Content-Range:items 0-199/999999999

Since it is undetermined how many items there are, the value 999999999 represents the total.

In this example, we have a total of 298 items. if a subsequent request is for the next 200 items (200-399), this
includes the total. The response will then also show the total number of items (298) returned by the macro:

Content-Range:items 200-399/298

Admin

All API requests for Automate Admin GUI to the Automate API include the following headers:

REQUEST-PORTAL: Automate Admin
PORTAL-TYPE: administration

Self-service

All API requests for Self-service to the Automate API include the following headers:

REQUEST-PORTAL: Automate Self-service
PORTAL-TYPE: end-user

From a VOSS Automate API perspective, the headers are coming from Self-service. However, from a browser
perspective, the user will not see the headers in browser developer tools, since Self-service requests are
terminated by a Node.js server on the VOSS platform. The header injection is done in Node.js.

1.2.10. Login and Authorization Tokens

The API includes as part of responses a X-CSRFToken response header that is set to the CSRF token,
for example to KEMzraBRygy2ZJ7fLuvbfKhAEIPK9D4s. API clients should source the CSRF token from this
header.

For background on CSRF, see:

• Cross-site request forgery

• Cross-Site Request Forgery (CSRF)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

18

http://en.wikipedia.org/wiki/Cross-site_request_forgery
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29

1.2. Anatomy of an API Request

The API also includes as a part of responses a csrftoken cookie containing the CSRF token. This cookie is
marked httponly and as such is not readable by browser-based client scripts. API clients should not try to
source the CSRF token from this cookie.

The X-CSRFToken response header and csrftoken cookie values are identical.

When performing requests that require CSRF token validation, API clients should follow the general proce-
dure:

1. Prior to performing the principal request, perform a request to the API and retrieve a CSRF token from
the resulting response’s X-CSRFToken response header. The CSRF token remains constant for the
duration of a session, so clients could perform this request once per session (post authentication),
storing the CSRF token and using it for subsequent requests.

Clients should also retrieve the csrftoken cookie from the response.

2. For the primary request, include a X-CSRFToken request header containing the CSRF token as sourced
from the response header, as well as the unchanged csrftoken cookie.

Note: Cookies must conform to https://tools.ietf.org/html/rfc6265

Example for login:

GET http://localhost:8000/login/

Raw response headers:
Cache-Control: max-age=0
Connection: keep-alive
Content-Encoding: gzip
Content-Language: en-us
Content-Type: text/html; charset=utf-8
Date: Mon, 20 Apr 2015 09:18:47 GMT
Expires: Mon, 20 Apr 2015 09:18:47 GMT
Last-Modified: Mon, 20 Apr 2015 09:18:47 GMT
Server: nginx/1.4.6 (Ubuntu)
Set-Cookie: csrftoken=KEMzraBRygy2ZJ7fLuvbfKhAEIPK9D4s;
SameSite=Lax;
httponly;
Path=/
sessionid=5d1ccc96cbd7e7f290020aaedd64c1b3; httponly; Path=/
sso_login_url=; Path=/
Transfer-Encoding: chunked
Vary: Accept-Encoding, Cookie, Accept-Language, X-CSRFToken
X-CSRFToken: KEMzraBRygy2ZJ7fLuvbfKhAEIPK9D4s

1. Source the CSRF token from response’s X-CSRFToken header.

2. Retain the CSRF cookie from response’s csrftoken cookie.

3. Now perform the primary POST /login/ request to login, including the CSRF token as a X-CSRFToken
request header as well as the unchanged csrftoken cookie:

POST http://localhost:8000/login/

Raw request headers:

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

19

https://tools.ietf.org/html/rfc6265

1.2. Anatomy of an API Request

(continued from previous page)

Host: localhost:8000
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:37.0) Gecko/20100101␣
→˓Firefox/37.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://localhost:8000/login/
Cookie: sessionid=5d1ccc96cbd7e7f290020aaedd64c1b3;␣
→˓csrftoken=KEMzraBRygy2ZJ7fLuvbfKhAEIPK9D4s; sso_login_url=
Connection: keep-alive
X-CSRFToken: KEMzraBRygy2ZJ7fLuvbfKhAEIPK9D4s

With for example payload as parameters:

&username=joe
&password=bloggs
&next=%2F

Note: Anti-CSRF protection for Self-service is managed via the XSRF-TOKEN cookie and not the csrftoken
cookie which is received on each request.

1.2.11. Non-interactive Login

The following request, parameter and endpoint is available on the API:

REQUEST:

POST <hostname>/noninteractivelogin/

PAYLOAD:

• Content-Type: application/json

• JSON containing user credentials, for example:

{
"username":"joebloggs@email.com",
"password":"mysecret"
}

PARAMETER:

A request parameter to expose hierarchy and role related data is available: rbacinfo

With the user credentials payload as above, the following calls result in the same response:

POST <hostname>/noninteractivelogin/
POST <hostname>/noninteractivelogin/?rbacinfo=false
POST <hostname>/noninteractivelogin/?rbacinfo=False

If the request is successful:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

20

1.2. Anatomy of an API Request

• the HTTP response is 200

• the JSON body is for example:

{
"is_externally_authenticated": false,
"last_successful_login_time": "2017-06-12T13:28:55.785Z",
"num_of_failed_login_attempts": 0
}

X-CSRFToken VALUE

When enabling the rbacinfo parameter and with the same user credentials payload as above, the following
calls result in the same response:

POST <hostname>/noninteractivelogin/?rbacinfo
POST <hostname>/noninteractivelogin/?rbacinfo=true
POST <hostname>/noninteractivelogin/?rbacinfo=True
POST <hostname>/noninteractivelogin/?rbacinfo=

If the request is successful:

• the HTTP response is 200

• the JSON body is for example:

{
"hierarchy_path": "sys.Prov",
"language": "en-us",
"is_externally_authenticated": false,
"hierarchy_name": "Prov",
"hierarchy_href": "/api/data/HierarchyNode/593e8fa28719cf00060a7011/",
"role_name": "ProvRole",
"role_href": "/api/data/Role/593e91098719cf00060a7029/",
"role_pkid": "593e91098719cf00060a7029",
"last_successful_login_time": "2017-06-12T13:28:38.390Z",
"hierarchy_type": "TestHierarchyNodeType",
"hierarchy_pkid": "593e8fa28719cf00060a7011",
"num_of_failed_login_attempts": 0
}

If a data/PrivacyPolicy instance is found at or above the logged in user’s hierarchy, the data for the
instance closest to that hierarchy will be included in the response JSON body:

{
"privacy_policy": {

"url": "<URL from data/PrivacyPolicy>",
"name": "<Name from data/PrivacyPolicy>"

},
"hierarchy_path": "sys.Prov",
"language": "en-us",
...

Note:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

21

1.2. Anatomy of an API Request

• Upon the first successful login, the last_successful_login_time is an empty string.

• Upon a subsequent successful login, the last_successful_login_time is the login time prior to
current session.

• The num_of_failed_login_attempts value is reset to 0 after a successful login.

If the requests above fail:

• the HTTP response is 403

• the JSON body is:

{
"error_message": "Please enter a valid username and password.",
"error_code": 27009

}

• the X-CSRFToken value

1.2.12. Access Profiles

A logged in user is associated with an Access Profile that specifies access permissions to operations and
models.

A user’s Access Profile may not apply to models that are included or referenced in for example GUI Rules,
Wizards or models that provide choices.

For example, when API calls are made to models that contain choices, such as:

GET api/data/DataSync/add/?schema_rules=&schema=&format=json

then any model GET calls that are carried out to provide the list of choices are shown with a generated
auth_token that is required to provide access to these GET calls. This can be seen in the returned
schema, for example, for the target call to show the choices available for sync_order in data/DataSync
([hierarchy] is substituted with the GET caller hierarchy ID.):

sync_order: {
target: "/api/data/ModelTypeList/choices/?hierarchy=[hierarchy]&
field=name&format=json&
auth_token=[auth_token]"
title: "Synchronization Order"
description: "The selected 'ordered' model type list that was created
as a model instance of the Model Type List. This list dictates the
order in which models will be synchronized. See: Model Type List."
format: "uri"
choices: []
target_attr: "name"
target_model_type: "data/ModelTypeList"
type: "string"

This auth_token parameter is required to provide authorization to access the data/ModelTypeList, which
may not be available in a user’s Access Profile.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

22

1.2. Anatomy of an API Request

1.2.13. Time to Live (TTL)

For client applications that use session-based authentication upon initial login, an API endpoint that extends
(if possible) and reports the session lifetime is available. This endpoint is typically used for client-side session
management, for example to display a pop up to warn the user to extend the session before it expires (as in
the case of for example self-service).

POST <hostname>/api/session/keep_alive/

The request returns a payload in JSON format with details:

• max_age: The number of seconds remaining for the session.

• expiry: The date at which the session will expire.

• extendable: Boolean indicating if the client can extend the length of the session by triggering an API
request.

An example response:

{
max_age: 86296
extendable: false
expiry: "2015-03-18T10:24:53.059Z"

}

1.2.14. Account Endpoint

The <hostname>/account endpoint provides addiotnal endpoints:

• <hostname>/account/me/ : returns user details

• <hostname>/account/password/ : allows for password management

Logged-in User Details

The following request and endpoint is available on the API to return logged-in user details:

• Request:

GET <hostname>/account/me/?format=json

If the request is successful:

• the HTTP response is 200

• the JSON body contains user account details, as shown in the example snippet below:

{
"username": "CS-PAdmin",
"menu_layout": {
"pkid": "5c7daa2a7579050013878f83",
"href": "/api/data/MenuLayout/5c7daa2a7579050013878f83/",

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

23

1.2. Anatomy of an API Request

(continued from previous page)

"name": "HcsProviderMenu"
},
"language": "en-us",
"landing_page": {
"pkid": "5c7daa157579050013878d88",
"href": "/api/data/LandingPage/5c7daa157579050013878d88/",
"name": "HcsProviderLP"

},
"pkid": "5c7db7c5757905001387e6a1",
"account_information": {
"password_last_change_time": "2019-03-05T00:54:27.277Z",
"last_login_time": "2019-03-05T08:01:11.184Z"

},
"hierarchy": {
"pkid": "5c7db7b5757905001387e2d6",
"node_type": "Provider",
"href": "/api/data/HierarchyNode/5c7db7b5757905001387e2d6/",
"name": "CS-P",
"hierarchy_path": "sys.hcs.CS-P"

},
"theme": {
"pkid": "5c7db13d757905001387c33b",
"href": "/api/data/Theme/5c7db13d757905001387c33b/",
"name": "default"

},
"role": {

...

Password Change

An API endpoint is available to request the details needed for a user password change and to submit a
password change.

To get details of the POST request and the JSON schema of the payload to change the password, use the
request:

GET https://hostname/account/password/change?hierarchy=[hierarchy]&format=json

To change a user password, the request will then be of the format:

POST https://hostname/account/password/change?hierarchy=[hierarchy]&format=json

The payload is in JSON format and contains user details, old password and new password.

A successful password change request returns a response of the format:

{"meta": {
"uri": "/account/password/change/"
},

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

24

1.3. Anatomy of an API Response

(continued from previous page)

"success": true
}

The request format if a user changes their own password on the GUI, payload parameters include the token,
for example:

csrfmiddlewaretoken=am9lOmJsb2dncw==

In this instance, the user_pkid a part of the payload, as it is hidden in the GUI.

For a successful password change from the GUI, the user’s browser client is redirected to the endpoint:

https://hostname/account/password/change/done/

This presents the user with a message and request to log in with the new password.

1.3. Anatomy of an API Response

1.3.1. API Response Overview

Below are the typical elements of an API response:

• header - API header.

• meta - Meta data.

• data - Actual data contained in the model as name:value pairs.

• schema - Schema describing the structure of the data of the resource, in particular the data types of
the names in the name:value pairs in the data.

• resources - An object grouping a list of single resource’s meta and data objects in an API list response

• pagination - an object containing pagination data in an API list response

Not all the elements above exist in each response. These differ depending on request parameters and
whether response contains a list of resource or a single resource.

1.3.2. API Response Header

The following is a header data example of an API response from an API request not using Basic Auth:

Date: Tue, 28 Jun 2022 12:17:22 GMT-1s
Content-Type: text/html; charset=utf-8
Content-Length: 0 byte
Connection: keep-alive
Content-Language: en-us
Vary: Accept-Language, Cookie
X-Request-Id: b41b12575a97b6b16ca79451b1d5c94c7f488c0b
X-Request-Duration: 0.021724

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

25

1.3. Anatomy of an API Response

(continued from previous page)

Location: /login/
X-Session-Id: hy1y3y2nj1bm3kjnypfz1w24egvd4vbi
X-Session: {"max_age": 1800, "extendable": true, "expiry": "2022-06-28T12:47:22.
→˓346294+00:00"}
Set-Cookie: csrftoken=MnPzYbeItKcSyyysmHWyyypz3igZ79iy;
SameSite=Lax;
httponly;
Path=/
Set-Cookie: sessionid=q150dg1ctpgc1sza3ktggyguo4nsbg5u;
SameSite=Lax;
httponly;
Path=/
Referrer-Policy: strict-origin-when-cross-origin
Cache-Control:
Content-Security-Policy: style-src 'unsafe-inline' 'self'; script-src 'unsafe-eval'
→˓'self';
Strict-Transport-Security: max-age=63072000
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block

• The Set-Cookie header entries with csrftoken and sessionid have SameSite=Lax; set to defend
against Cross Site Request Forgery (CSRF) attacks.

• The X-Session header entry has the following properties:

– max_age: The number of seconds remaining for the session.

– expiry: The date at which the session will expire.

– extendable: Boolean indicating if the client can extend the length of the session by triggering an
API request.

This information is also available from a POST call to the following endpoint:

POST <hostname>/api/session/keep_alive/

An example response JSON payload:

{
max_age: 86296
extendable: false
expiry: "2015-03-18T10:24:53.059Z"

}

Refer to the section: Time to Live (TTL)

Note: This header is not present in responses from Basic Auth API requests.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

26

1.3. Anatomy of an API Response

1.3.3. Single Resource Response

A single resource response outline is as follows:

{
"meta": {
...

},
"data": {
...

},
"schema": {
...

}
}

The schema object is only returned for a single resource request when the schema request parameter is
added to the request. Please see Response Elements

1.3.4. Resource List Response

The response object outline is as follows:

{
"pagination": {

...
},
"meta": {

...
},
"resources": [{

"meta": {
...

},
"data": {

...
}

},
{

"meta": {
...

},
"data": {

...
}

}]
}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

27

1.3. Anatomy of an API Response

1.3.5. POST/PUT/DELETE/PATCH Response

Support for synchronous and asynchronous request resulting in transactions, is controlled by the nowait
parameter in the request URL. The support for asynchronous request handling is indicated in the API schema
structure actions with the support_async property.

The outline of the default synchronous transaction response of mutator transactions when the API parameter
nowait is set to be false, is as follows:

{
"pkid": "51f7e09bd0278d4b28e981da",
"model_type": "data/CallManager",
"meta": {
"parent_id": {
"pkid": "51f7d06ad0278d4b34e98134",
"uri": "/api/data/HierarchyNode/51f7d06ad0278d4b34e98134"

},
"summary_attrs": [
{
"name": "description",
"title": "Description"

},
{
"name": "host",
"title": "Host Name"

},
{
"name": "port",
"title": "Port"

}
],
"uri": "/api/data/CallManager/51f7e09bd0278d4b28e981da"

},
"success": true

}

The outline of the synchronous response to asynchronous mutator transactions when the API parameter
nowait is set to be true, is as follows:

{
"href": "/api/tool/Transaction/cfe8a8fd-98e6-4290-b0c3-2dfa2224b808",
"success": true,
"transaction_id": "cfe8a8fd-98e6-4290-b0c3-2dfa2224b808"

}

To retrieve (for example by polling) the transaction status of any mutator transactions, use the transaction_id
in the synchronous response to the asynchronous mutator transaction as follows:

GET /api/tool/Transaction/cfe8a8fd-98e6-4290-b0c3-2dfa2224b808

The response contains the status ad replay action URL, for example:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

28

1.3. Anatomy of an API Response

{
"meta": {

"model_type": "tool/Transaction",
"summary_attrs":
{
"name": "name",
"title": "Name"
},
"references": {}
"actions":
{
"replay": {
"class": "execute",
"href": "/api/tool/Transaction/cfe8a8fd-98e6-4290-b0c3-2dfa2224b808/
replay?format=json",

"method": "GET",
"title": "Replay"

}
}

}
"data": {

"status": "Completed",
"username": "sysadmin",
"resource": {
"hierarchy: "sys",
"after_transaction": "/api/data/GeneralHelp/5268c7d3a616540a766b91f5/?
cached=5268f2eba616540a736b926c Entity",

"current_state": "/api/data/GeneralHelp/5268c7d3a616540a766b91f5/ Entity",
"before_transaction": "/api/data/GeneralHelp/5268c7d3a616540a766b91f5/
?cached=5268c7d3a616540a766b91f7 Entity",

"pkid": "5268c7d3a616540a766b91f5",
"model_type": "data/GeneralHelp",
}

[...]

This mechanism can be used to retrieve the transaction status of any transaction or its sub-transaction, using
the pkid of the (sub) transaction.

For the View model, the GET call to tool/Transaction/[trans pkid] shows the View resource has no
instance pkid, because a view model stores no instances.

1.3.6. Asynchronous Mutator Transaction Status Callback

When using the API parameter nowait=true, the service requester can submit optional request metadata
- containing a callback URL - with any mutator request by appending the request_meta tag to the normal
payload of the request.

To receive asynchronous transaction status notifications, the requesting system needs to publish an HTTP
service to service requests made by the callback URL. An example of a simple http service is provided in a
separate section.

The callback operation supports an optional username and password that VOSS Automate uses to perform
HTTP basic authentication on requests made to the callback service. The optional elements external_id

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

29

1.3. Anatomy of an API Response

and external_reference are explained in the section on correlation identifiers.

{
<Actual request data goes here>,
"request_meta": {

"external_id": "3x4mpl3-3xtern4l-FF",
"external_reference": "Example External Reference-FF",
"callback_url": "http://my.callbackservice:8080",
"callback_username": "username",
"callback_password": "password"

}
}

Note the following details:

• The schema of system resources or system tools do not include reference to the request meta data in
the schema definition of each resource in the system.

• The <Actual request data goes here> request data needed to for example add a country_name
instance for data/Countries would be similar to: "country_name": "South Africa".

• The request data for deleting two countries for example would be

"hrefs":[
"/api/data/Countries/534fdf190dd19012066433ce",
"/api/data/Countries/534fda1d0dd1901206643397"

]

• For the callback service to function, the callback service needs to be accessible from the fulfillment
server.

Upon completion of the asynchronous mutator transaction posted with a callback URL, VOSS Automate
POSTs an HTTP request (asynchronous transaction status callback) to the callback service specified by the
callback URL. The callback service needs to respond with a HTTP 200 ACK before internal processing of the
callback. The callback includes the transaction ID sent to the requesting system as part of the synchronous
response. To correlate the asynchronous transaction status callbacks with the original request, the requesting
system would need to record the transaction_id returned in the synchronous response.

The HTTP headers and the payload of the asynchronous transaction status callback includes the following
information:

HTTP headers:

{
'accept-encoding': 'identity',
'authorization': 'BasicdXNlcm5hbWU6cGFzc3dvcmQ=',
'content-length': '275',
'content-type': 'application/json',
'host': 'localhost: 8080'

}

Payload:

{
"external_id": "3x4mpl3-3xtern4l-FF",

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

30

1.3. Anatomy of an API Response

(continued from previous page)

"external_reference": "ExampleExternalReference",
"status": "Success",
"transaction": {

"href":
"http: //my.fulfillmentserver/api/tool/
Transaction/e6ac7c1e-c63a-11e3-9af5-08002791605b/",

"id": "e6ac7c1e-c63a-11e3-9af5-08002791605b"
}

}

Note the following details:

• Correlation identifiers (see correlation identifiers) are included in the payload if they are present.

• The status of the transaction is as in the transaction log: Fail or Success.

The transaction status in VOSS Automate is not affected by the response of the HTTP service published
by the requesting system. The transaction log information includes the callback request and the response
returned by the callback service published by the external system.

For transactions with multiple sub-transactions, a single transaction status callback request is made upon
the completion of the parent transaction. Transaction status callbacks are not supported for the parent
transactions tool/BulkLoad and tool/DataImport.

In the event that the transaction status callback is not received by the external system due to for example a
network outage, the external system can poll to retrieve the transaction status. For example:

GET /api/tool/Transaction/e6ac7c1e-c63a-11e3-9af5-08002791605b

Callbacks for failing transactions include error data as part of the callback body/payload. For example:

{u'authorization': 'Basic dXNlcm5hbWU6cGFzc3dvcmQ=',
u'error': {u'code': 4001,

u'http_code': 400,
u'message': u'Error, Duplicate Resource Found.
data/CallbackDataModel already exists with the following
unique data - (name = "CallbackDataModel Name 2")'},

u'external_id': u'3x4mpl3-3xt3rn4l-7d',
u'external_reference': u'External Ref',
u'resource': {u'hierarchy': u'542a7347c952703e3646a4c5',

u'model_type': u'data/CallbackDataModel',
u'pkid': u'542a7357c952703e3646a4da'},

u'status': u'Fail',
u'transaction': {u'href':
u'http://django.testserver/api/tool/Transaction/844344ee-4881-11e4-a4f9-0800279e955b/',

u'id': u'844344ee-4881-11e4-a4f9-0800279e955b'}}

Error data, as shown in the example, includes:

• the exception code: 4001

• http error code: 400

• error message:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

31

1.3. Anatomy of an API Response

'Error, Duplicate Resource Found. data/CallbackDataModel already
exists with the following unique data - (name = "CallbackDataModel Name 2")'

This is the same error message structure as returned by the API for failing requests.

1.3.7. Example of an Asynchronous Mutator Transaction with nowait=true

Request:

POST http://172.29.232.238/api/data/Countries/
?hierarchy=[hierarchy]
&nowait=true
Payload of the request:

{'country_name': 'Callback Created Example Country Name',
'request_meta': {'callback_password': 'password',

'callback_url': 'http://localhost:9365',
'callback_username': 'username',
'external_id': '3x4mpl3-3xt3rn4l-7d',
'external_reference': 'External Ref'}}

Synchronous response:

{
href: "/api/tool/Transaction/e6ac7c1e-c63a-11e3-9af5-08002791605b"
success: true
transaction_id: "e6ac7c1e-c63a-11e3-9af5-08002791605b"
}
HTTP 202 ACCEPTED

Asynchronous transaction status callback (console output of the simple http service provided in the separate
example section):

POST - 2014-04-17 16:16:43.737509

Headers:

{'accept-encoding': 'identity',
'authorization': 'Basic dXNlcm5hbWU6cGFzc3dvcmQ=',
'content-length': '275',
'content-type': 'application/json',
'host': 'localhost:8080'}

Raw Callback Body:

'{"status": "Fail", "transaction":
{"href":

"http://django.testserver/api/tool/Transaction/

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

32

1.3. Anatomy of an API Response

(continued from previous page)

34866060-fd47-11e3-88dd-080027880ca6/",
"id": "34866060-fd47-11e3-88dd-080027880ca6"},
"resource": {"hierarchy": "1c0efge2c0deab10da595101",

"model_type": "data/Countries",
"pkid": "53ac3d41c9527062809c0021"},
"external_reference": "External Ref",
"external_id": "3x4mpl3-3xt3rn4l-7d"}'

Pretty Callback Body:

{u'external_id': u'3x4mpl3-3xt3rn4l-7d',
u'external_reference': u'External Ref',
u'resource': {u'hierarchy': u'1c0efge2c0deab10da595101',

u'model_type': u'data/Countries',
u'pkid': u'53ac3d41c9527062809c0021'},

u'status': u'Fail',
u'transaction': {u'href':

u'http://django.testserver/api/tool/Transaction/
34866060-fd47-11e3-88dd-080027880ca6/',

u'id': u'34866060-fd47-11e3-88dd-080027880ca6'}}

localhost - - [17/Apr/2014 16:16:43] "POST / HTTP/1.1" 200 –

1.3.8. Correlation Identifiers

In order to allow an external system use its own identifiers to cross-reference transactions in the system, the
API supports two external identifiers for all transactions. This allows the external system to:

1. Tie together multiple transactions in the system (using for example an order number)

2. Track individual requests in the system using the external IDs.

External identifiers are not supported for the parent transactions tool/BulkLoad and tool/DataImport.

The transaction log will include these two IDs and the transaction log, as shown below.

You can obtain the details of the parent transaction with a given ID by using the following API call:

GET http://my.fulfillmentserver/api/tool/Transaction/
?hierarchy=[hierarchy]&
filter_condition=contains&
format=json&
filter_text=3x4mpl3-3xtern4l-FF&
filter_field=external.id

You can obtain the details of transactions tied together using an external reference number using the following
API call:

GET http://my.fulfillmentserver/api/tool/Transaction/
?hierarchy=[hierarchy]&

filter_condition=contains&
format=json&

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

33

1.3. Anatomy of an API Response

(continued from previous page)

filter_text=Example%20External%20Reference-FF&
filter_field=external.reference

.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

34

1.3. Anatomy of an API Response

1.3.9. Example Of A Simple HTTP Server

The following code is an example of a simple HTTP server that can be used to test basic async transaction
status callback operations. The code is not intended for actual use.

Note that the HTTP 200 ACK is sent asyncronously before internal processing of the callback.

#!/usr/bin/env python
from datetime import datetime
import SimpleHTTPServer
import SocketServer
import logging
import cgi
import json
from pprint import pprint
PORT = 8080

class ServerHandler(SimpleHTTPServer.SimpleHTTPRequestHandler):

def do_GET(self):
SimpleHTTPServer.SimpleHTTPRequestHandler.do_GET(self)

def do_POST(self):
self.send_response(200)
self.wfile.write("ACK")

Insert internal processing here.
Below is an example of internal processing that simply prints out the

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

35

1.3. Anatomy of an API Response

(continued from previous page)

callback request.
print "\nPOST - {}".format(datetime.now())
print "Headers:"
pprint(dict(self.headers))
print "\nRaw Body:"
body = self.rfile.read(int(self.headers['Content-Length'])).decode('utf-8')
pprint(body)
print "\nPretty Body:"
pprint(json.loads(body))

Handler = ServerHandler

httpd = SocketServer.TCPServer(("", PORT), Handler)

print "Serving at port", PORT
httpd.serve_forever()

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

36

2. Using the API

2.1. Developer Guidelines

The following practices are recommended to all developers. The aim is to reduce the number and extent of
any updates that may be necessary.

1. The order of elements within the interface data and messages may change, within the constraints of
the interface specification. Developers should avoid unnecessary dependence on the order of elements
to interpret information exchanged with VOSS Automate.

2. New interface methods, operations, actions, requests, responses, headers, parameters, attributes,
other elements, or new values of existing elements, may be introduced into the VOSS Automate
interfaces. Developers should disregard or provide generic treatments where necessary for any
unknown elements or unknown values of known elements encountered.

3. Notifications, operations, methods, actions, requests, responses, headers, parameters, attributes, and
other elements from previous versions of VOSS Automate interfaces, will remain, and will maintain their
previous meaning and behavior to the extent possible and consistent with the need to correct defects.

4. Applications should not be dependent on interface behavior resulting from defects (behavior not
consistent with published interface specifications), since the behavior can change when defects are
fixed.

5. The use of deprecated methods, operations, actions, handlers, requests, responses, headers, parame-
ters, attributes, or other elements should be removed from applications as soon as possible to avoid
issues when those deprecated items are removed from VOSS Automate or its interfaces.

6. Application Developers should be aware that not all new features and new supported devices (for
example, phones) will be forward compatible. New features and devices may require application
modifications to be compatible or to make use of the new features or devices.

2.2. Workflow Tasks

1. Log in with “hcsadmin@sys.hcs”, using the password that was set during the installation.

2. Get the Provider Name & Provider PKID using the data/HierarchyNode API in the url, where “hierarchy”
= “sys.hcs”.

3. For all POST/PUT/DELETE operations to be asynchronous transactions, set the query param
“nowait=true” in the URI.

To create a provider admin, use the relation/User API in the url, with the hierarchy value that you
receive in the GET call of Step-1 (PKID or the dot notation).

37

mailto:hcsadmin@sys.hcs

2.2. Workflow Tasks

4. Creating a Reseller is not mandatory, and it depends on the structure of provisioning. A Reseller must
be created if the tree structure of the provisioning is: Provider -> Reseller -> Customer -> Site.

To create a Reseller use the relation/HcsResellerREL API, with the Provider hierarchy of the API of
Step-1.

5. To create a Reseller Admin, use the relation/User API in the url, with the hierarchy value of the Reseller
(PKID or the dot notation).

6. To create a Shared Network Device (Cisco Unified Communications Manager or Unity), it needs to be
done either at either the Provider Hierarchy or the Reseller Hierarchy Level.

Use the following APIs for each of the devices listed below:

Device API

Cisco Unified Communications Manager relation/HcsCallManagerREL

Unity relation/HcsUnityConnectionREL

Presence relation/HcsPresenceREL

WebEx relation/HcsWebExREL

7. The Customer is directly under Provider if the deployment structure is Provider -> Customer -> Site or
under the Reseller if the deployment structure is Provider ->Reseller ->Customer -> Site.

To create a Customer, use the relation/HcsCustomerREL API, with the hierarchy of provider/reseller
that can be retrieved using the respective API.

8. To create a Customer Admin, use the relation/User API in the url, with the hierarchy value of the
Customer(PKID or the dot notation).

9. If the Customer is using “shared_uc_apps”, you cannot add dedicated devices for that customer.

Adding a Dedicated Network Device for a Customer(Cisco Unified Communications Manager or Unity)
needs to be done at the Customer hierarchy Level. Use the following APIs for each of the devices listed
below:

Device API

Cisco Unified Communications Manager relation/HcsCallManagerREL

Unity relation/HcsUnityConnectionREL

Presence relation/HcsPresenceREL

WebEx relation/HcsWebExREL

10. Once the devices are configured, a Network Device List (NDL) needs to be configured for the Customer.
To create an NDL use the relation/HcsNetworkDeviceListREL API. At least one device is required to
add an NDL.

11. It is not mandatory to have a Network Device List (NDL) to create a Site. However, an NDL is needed
to add a Subscriber or Phone or Lines to a Site. Sites created without an NDL can later be able
associated to one.

To create a site, use the relation/HcsSiteREL API.

12. Using the relation/User API will only be local Cisco Unified Communications Domain Manager admin.
To add an Admin who is also a Subscriber, use the relation/User API, which can later be moved to any
Cisco Unified Communications Manager that is associated with the Site.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

38

2.3. Developer Tools

To create a Site Admin, use the relation/User API in the url, with the hierarchy value of the Site (PKID
or the dot notation).

13. Complete the following activities at the Site level:

a. To create a Subscriber use the relation/Subscriber API.

b. To create a Line use the view/HcsDNMgmtVIEW API.

c. To create a Phone use the relation/SubscriberPhone API.

d. To create a Voicemail use the relation/Voicemail API.

2.3. Developer Tools

The Developer tools that are available in Mozilla Firefox and Google Chrome allow all the actions exposed
by each API to be displayed as they are being called in the GUI. This gives us the opportunity to view the
request and response actions as they occur, and provide the details of what each API provides and its
relationship to the GUI.

With Developer tools enabled, the network tab of the Developer tools show the information that is contained
in each request and response as you navigate and use the GUI. This allows service providers a direct view
as to what data each API requires.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

39

3. Handling API Fault Responses

3.1. Fault Responses

To interpret the HTTP fault responses codes and the response_code within the data element of a API
response for a faulty request, refer to the list of possible error codes.

3.2. Error Messages

The tables below provide:

• an error code range reference

• message details of the error codes

To inspect application log messages from the command line, set the debug level on and view the app log.
Refer to the Platform Guide for more details.

voss set_debug 1
log view voss-deviceapi/app.log

The message strings are shown in their template format: references to specific properties are shown as
placeholders that are represented by {} .

Note: For AuthError codes, the following rules apply:

• For API version 11.5.3 and below, only the AuthError_11_5_3 table messages apply.

• For API greater than 11.5.3, AuthError table messages override the corresponding AuthError_11_5_3
table messages, while the unchanged AuthError_11_5_3 table messages still apply.

40

3.2. Error Messages

RuleError Message HTTP
Code

15000 Invalid hierarchy for this operation. Please select new hierarchy. 449

15001 Multiple devices found at this Hierarchy level. Please select device. 449

15002 Multiple network device lists (NDL) found at this Hierarchy. Please select
a NDL.

449

15003 Network device list reference (NDLR) not found at this Hierarchy. 449

15004 Network device list (NDL) with pkid [{}] not found in available list. Please
check NDL rule at the Hierarchy

400

15005 No network device lists (NDL) found at this Hierarchy. 449

15999 Error, (UNHANDLED_ERROR) 400

TransactionError Message HTTP
Code

23000 Unable to determine Transaction ID. 400

23001 Transaction must be registered with valid user details. 400

23002 Transaction not found. 404

23003 Transaction must be viewed with valid user details. 400

23004 {} (MAX_INSTANCES_EXCEEDED) 400

23005 Invalid Transaction State: {} 400

23006 Transaction canceled. 400

23007 Transaction must be registered with the hierarchy in which it is executing. 400

23008 Transaction must be registered with model_type if pkid is provided. 400

23010 The current filter caused a long running request. Please add more filter
fields, use Case Sensitive or change the criteria types to one of {}.

400

23011 Invalid choices field [{}]. 400

23012 The [{0}] condition on field [{1}], is not allowed. 400

23013 Invalid start and end date range provided in filter. 400

23014 Invalid start and end ID range provided in filter. 400

23015 Invalid ID value in filter 400

23999 Error, {} (UNHANDLED_ERROR) 400

ListUtilError Message HTTP
Code

20000 Invalid query dictionary, expected 1 key! 400

20999 Error, (UNHANDLED_ERROR) 400

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

41

3.2. Error Messages

AllError Message HTTP
Code

999999 All Error 400

ForeignKeyError Message HTTP
Code

24000 Could not resolve foreign key to {model_type} with {attr_name}:
{attr_value}.

400

24999 Error, {} (UNHANDLED_ERROR) 400

ChoicesError Message HTTP
Code

26000 Instance context for choices not valid, instance: {instance} 400

26999 Error, {} (UNHANDLED_ERROR) 400

CnfError Message HTTP
Code

40000 Device change notifications are not supported for device {}. 400

40001 Device change notification data for device {} has been lost. Tracking data
has been repaired and collector process will continue. Some changes
may have been lost, please run a full sync on the device.

400

40002 Device change notification tracking data for device {} has become cor-
rupted. Tracking data has been repaired and collector process will
continue. Some changes may have been lost, please run a full sync on
the device.

400

40003 Device change notification tracking DB write for device {} failed. The
collector process will continue to attempt DB writes. Please investigate
the database write failure. {}

400

40004 Device change notification data DB write for device {} failed. The collec-
tor process will continue to attempt DB writes. Please investigate the
database write failure. {}

400

40005 Unable to repair device change notification tracking data for device {}. {} 400

40006 Too many unprocessed changes recorded for device {}. No new changes
will be recorded until at least {} changes are processed. Please configure
and run the necessary data syncs.

400

40008 Could not update pending changes data for device {}. {}. 400

40010 Unable to clear device change notifications for device {}. {}. 400

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

42

3.2. Error Messages

PackageError Message HTTP
Code

17000 Unable to load package. Package ({}) depends on ({}) but it does not
exist.

400

17001 Unable to load package. Package ({}) requires ({} {}) but {} is currently
loaded.

400

17999 Unable to load package. {} 400

CascadeDeleteEr-
ror

Message HTTP
Code

13000 Hierarchy path or pkid required 400

13001 Could not delete {} out of {} resources. 400

13002 Could not move the following resources that failed to delete: {}. 400

13999 Error, (UNHANDLED_ERROR) 400

WebExError Message HTTP
Code

31000 [{}] Site Name or Site ID must at least be specified 400

CertificateError Message HTTP
Code

25001 Certificate request cannot be exported while ‘Generate Certificate Sign-
ing Request’ is not set.

400

25002 Certificate can only be imported when ‘Generate Certificate Signing
Request’ is set.

400

25003 Certificate upload failed. 400

25004 Uploaded file is not a certificate in .pem format. 400

25005 The SSL certificate expired. 400

25006 Public key cannot be exported while ‘Generate Certificate Signing Re-
quest’ is set.

400

25999 Error, {} (UNHANDLED_ERROR) 400

FileUploadError Message HTTP
Code

39000 Can not determine supported file extensions. 400

39001 ‘{}’ does not have a valid file extension. 400

39002 File is too large. Maximum permitted file size is {} bytes. 400

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

43

3.2. Error Messages

BulkLoadError Message HTTP
Code

10000 File Upload Error for File Name : ({}) 400

10001 File Encoding Error : ({}) 400

10002 Only valid Excel xlsx files are accepted 400

10003 General Error; ({}) 400

10004 {success} out of {total} items loaded successfully. 400

10005 Resource data was not found in worksheet ‘{worksheet}’. 400

10006 Both parallel and serial are not allowed in ‘{worksheet}’. 400

10007 Differing parallel_transaction_limit values are not allowed in ‘{work-
sheet}’.

400

10008 Invalid value of ‘{limit}’ for parallel_transaction_limit header in ‘{work-
sheet}’, should be left blank or a number between 1 and 100(inclusive).

400

10010 Data does not conform to schema; ({}) 400

10011 Hierarchy not specified for row with data; ({}) 400

10012 ‘{user}’ is not permitted access to resources at ‘{hierarchy}’. 403

10020 Hierarchy ‘{hierarchy}’ was not found. 400

10021 Action ‘{action}’ not allowed. 400

10022 Action ‘{action}’ not allowed for model ‘{model}’. 400

10030 User ‘{username}’ is not allowed to {operation} {model_type}. 403

10040 Fields do not exist in {model}: {fields}. 400

10041 No search fields specified in row. 400

10042 More than one resource found. Search fields ‘{search}’. 400

10043 Resource not found. Search fields ‘{search}’. 400

10044 Malformed search fields: {fields}. 400

10045 Malformed fields{message}: {fields}. 400

10046 Can not find meta actions for specified resource instance. 400

10047 Malformed entity header ‘{header}’ in cell ‘{cell}’ worksheet ‘{sheet}’. 400

10050 Can not enforce data type ‘{data_type}’ on ‘{data}’. Row data: {row_data} 400

10051 An internal error occurred while processing workbook ‘{filename}’{note} 400

10052 The specified meta_prefix ‘{meta_prefix}’ in sheet ‘{sheet_name}’ is
invalid.

400

10053 The specified meta_prefix ‘{meta_prefix}’ in sheet ‘{sheet_name}’ was
not found in base headers.

400

10054 The following base headers ‘{headers}’ in ‘{sheet_name}’ are prefixed,
but meta_prefix is not specified.

400

10061 No match for device ‘{device}’. 400

10062 XLSX File Error: ({}) 400

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

44

3.2. Error Messages

CnfWarning Message HTTP
Code

45000 Unprocessed changes at 75%% of limit for device {}. Please configure
and run the necessary data syncs.

400

DataSyncError Message HTTP
Code

29000 Could not find user executing data sync operation. 500

29001 User [{}] does not have {} {} permissions. 403

29002 Could not establish a test connection to the device. Verify that your
device connection details are correct.

400

29003 Aborting operation. Reason: {} 400

29004 {} (CRITICAL_SUBTRANSCATION_ERROR) 400

29005 Auth Error while testing connection to device 400

29999 Error, {} (UNHANDLED_ERROR) 500

WorkflowError Message HTTP
Code

7000 Workflow not found 400

7001 Maximum workflow recursion depth exceeded 400

7002 Invalid workflow script identifier {} 400

7003 Specified workflow script name {} not found 400

7004 Error looking up workflow script names against API 400

7005 Invalid workflow action 400

7006 {} (FAILED) 400

7007 Advanced Find Options invalid - Resource not found with options {} 400

7008 {} (CONDITION_CONSTRAINT) 400

7009 Advanced Find Options invalid - More than one resource found with
options {}

400

7010 Network Device List {} does not contain an entry for type {} 400

7011 Workflow operation Sync not supported for type {} 400

7012 No target device found for Workflow Sync operation 400

7999 Unexpected error occurred. 400

ExpectError Message HTTP
Code

35000 The expect binary is not present in the path on the server 500

35001 There was an error executing the expect script : {} 500

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

45

3.2. Error Messages

ResourceError Message HTTP
Code

4000 Error, Cannot delete Hierarchy until all resources under it are removed 400

4001 Error, Duplicate Resource Found. {} 400

4002 Resource Not Found {} 404

4003 Failed to save {}. {} 400

4004 Failed to save {}. {} 400

4005 Model Type cannot be None when adding a new Resource 400

4006 Resource Parent {} not found 400

4007 Resource Meta structure corrupt for {} 400

4008 Cannot create a Resource without a Parent Hierarchy 400

4009 Failed to save {}. {} 400

4010 Cannot find Resource relation {} 400

4011 Cannot find target device for model type {} in current hierarchy context 400

4012 Cannot find summary attr [{}] in schema root 400

4013 Cannot perform operation, model {} already has one or more instances 400

4014 Cannot perform operation, resource is part of domain model {} 400

4015 Resource Meta structure corrupt. {} 400

4016 Badly-formed schema; ‘properties’ missing for data type ‘object’ 400

4017 Cannot perform operation, model {} is already referenced by one or more
resources: {}

400

4018 Failed to execute {}. {} 400

4019 One or more errors occurred during import 400

4020 Transaction resource failed with errors {} 400

4021 Resources are not of the same type 400

4022 Model type for Resources not found 400

4023 Cannot move Hierarchy Node {} to {} 400

4024 Resource move failed with error {} 400

4025 Invalid business key {}, expected {} 400

4026 Cascade delete failed with error {} 400

4027 Invalid business key for import. Did not expect path, found {}. 400

4028 Resource move failed, Device at source hierarchy [{}] is different from
the target hierarchy [{}]

400

4029 Resource [{}] cannot be accessed by user [{}] 403

4030 Cannot perform operation. Hierarchy Node Type [{}] is reserved. 400

4031 Search index is not up to date. Please notify your administrator before
proceeding

400

4032 Attempting to create hierarchy node ‘{}’ is not permitted. 403

4033 Could not update reference cache, from: {}, reference: {}, error: {} 403

4034 Resource move failed, hierarchy [{}] of type [{}] does not contain an
NDLR

400

continues on next page

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

46

3.2. Error Messages

Table 2 – continued from previous page

ResourceError Message HTTP
Code

4035 CCM User Group [{}] not allowed. 400

4999 Unhandled Resource Error 400

MacroError Message HTTP
Code

6000 Template must be a dictionary - got {} 400

6001 No hierarchy supplied 400

6002 Invalid macro specified: {} 400

6003 Macro lookup of {} failed at hierarchy {} 400

6004 Macro lookup of {} returned multiple values {} at hierarchy {} 400

6005 Macro lookup of {} failed when fetching from {} at hierarchy {} 400

6006 Macro lookup failed for field {} in context {} 400

6007 Macro lookup failed for field {} in context {}, type str or int expected not
type dict {}

400

6008 Macro function {} not found 400

6009 Macro function arguments error - {} 400

6010 Macro function error - {} 400

6011 Unexpected business key format - {} 400

6012 Conditional Logic error occurred - {} 400

6013 Custom Macro function {} not found 400

6014 Custom Macro function {} not secure or contains invalid strings 400

6015 Could not parse the WhereClause Error:{} WhereClause:{} Please check
quotation

400

6016 Lookup field {} not supported/permitted. 400

6017 Filter field: {} not in fields: {}. 400

6018 Incorrect hierarchy direction, {}. Allowed: {}. 400

6019 Error in macro function ‘{}’ - {} 400

6999 Error, (UNHANDLED_ERROR) 400

InternalError Message HTTP
Code

1000 Cannot import Python model name {} 404

1001 Python Type error 400

1002 {} must be an integer 400

1003 Improperly configured settings, {} 400

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

47

3.2. Error Messages

GraphLookupEr-
ror

Message HTTP
Code

37000 Cannot perform operation, Resource with pkid [{}] cannot be accessed. 403

AuthError Message HTTP
Code

27000 {} (INCORRECT_PASSWORD_ERROR) 401

27001 {} (PASSWORD_VERIFICATION_ERROR) 401

27009 Please enter a valid username and password. 401

27013 External (SSO or LDAP) authentication is required. 401

27014 Please enter valid answers to security questions. 401

27024 Login not allowed currently. Please contact your administrator. 403

ModelError Message HTTP
Code

5000 [{}] Child model exists; ({}) 400

5001 [{}] Model already exists; ({}) 400

5002 One or more data sync errors occurred; ({}) 400

5003 [{}] The helper cannot instantiate a model it does not recognize; ({}) 400

5004 [{}] The specified resource could not be found; ({}) 404

5005 [{}] A single model instance was expected but more than one was found;
({})

404

5006 [{}] Attempt to modify a read-only model failed; ({}) 400

5007 [{}] Attempt to modify a read-only model field failed; ({}) 400

5008 [{}] Data does not conform to schema; {} 400

5009 [{}] Validation failed; {} 400

5010 [{}] Error manipulating schema; ({}) 400

5011 [{}] Error generating schema; ({}) 400

5012 [{}] Invalid foreign key to {} for business keys {} 400

5013 [{}] Badly-formed schema; ({}) 400

5014 [{}] Error deriving field value; {} 400

5015 Singleton constraint violated: Only one instance of [{}] is allowed per {}. 400

5016 The existing device in [{}] model cannot be modified, it is referenced by
other resources.

400

5017 [{}] Invalid foreign key to {} for value {} 400

5018 [{}] Operation not supported for model instance; ({}) 405

5019 [{}] Operation not supported; ({}) 405

5020 Unable to determine workflow for operation ‘{}’ 400

continues on next page

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

48

3.2. Error Messages

Table 3 – continued from previous page

ModelError Message HTTP
Code

5021 Workflow ‘{}’ not found 400

5022 Workflow operation ‘{}’ clashes with an existing model attribute/method 400

5023 Unable to execute {} workflow. {} 400

5024 Unable to compile data for provisioning workflow for {}, error {} 400

5025 [{}] Connection timeout error after ({}) seconds 400

5026 [{}] Connection error; ({}) 400

5027 [{}] API retry error; ({}) 503

5028 [{}] Authentication error; ({}) 400

5029 [{}] Attempt to add a contradicting rule; ({}) 400

5030 [{}] Phones of this type must be added as gateway endpoints 400

5031 [{}] Unable to add NDLR to hierarchy node containing device models
belonging to devices not referenced by NDLR

400

5032 [{}] Unable to query API with available data [{}] 400

5033 Retries exhausted; ({}) 400

5050 Password cannot be reused. 400

5051 New password must have {} characters different from old password. 400

5052 User cannot change their password more than once within {} day(s).
Please contact your administrator.

400

5053 Password does not meet minimum length required. 400

5054 Password {}. 400

5200 Invalid connection parameters for {}. Username and Password must
specified for BASIC authentication method.

400

5201 Invalid connection parameters for {}. Token must specified for OAUTH
authentication method.

400

5202 [{} {}] Unable to render model template [{}]. TEMPLATE: {} CONTEXT: {} 400

5203 [{} {}] Unable to parse API response. RESPONSE: {} 400

5204 Invalid connection parameters for {}. Hierarchy must be specified. 400

5205 [{}] Invalid paging parameters: page_size {} page_offset {} 400

5206 [{}] Paging required: page_size {} page_offset {} 400

5207 [{}] External response exceeded memory limit [{}] [{} {}] 400

5208 [{}] Template output exceeded memory limit [{}] [{}] 400

5209 [{}] Bad override for [{}] 400

5210 [{}] Session expired. The session cache has been cleared and the next
request will go through successfully.

400

5211 [{}] Unable to authenticate using session based auth. {} 400

5212 [{}] Cannot add device {} 400

5215 [{}] Disallowed input [{}] 400

5270 [{}] Request start over required: {} 400

continues on next page

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

49

3.2. Error Messages

Table 3 – continued from previous page

ModelError Message HTTP
Code

5280 Request start over attempts exhausted {} 400

5290 AXL request pagination error 400

5998 [{0}] {1} 400

5999 Error, {}. (UNHANDLED_ERROR) 400

ApiError Message HTTP
Code

3000 Hierarchy context may not be None, please select Hierarchy 400

3001 Error, Incorrect request format 400

3002 Error, Unhandled method for URL 400

3003 Invalid import file specified. {} 400

3004 Invalid export URL specified. {} 400

3005 Error, Invalid list view sort key [{}]. Valid options are {} 400

3006 Error, Invalid list direction [{}]. Valid options are {} 400

3007 Error, No schema available during list view 400

3008 Provisioning Workflow error [{}] 400

3009 Nothing to export 400

3010 List delete failed, error [{}] 400

3011 List size not allowed, requested [{}], maximum [{}] 400

3012 List sort by hierarchy path not allowed 400

3013 Function not implemented 400

3014 Attribute field name required 400

3015 Hierarchy path [{}] not found. 400

3016 Model type list [{}] not found at or above the current hierarchy. 400

3017 Bulk update failed, error [{}]. 400

3018 Bulk operation {} failed, error [{}]. 400

3019 Schemas of data being imported have cyclic foreign keys {}. 400

3020 Imported {} out of {} items successfully. 400

3021 {} is a required GET parameter. 400

3022 Invalid Range HTTP header: {} 400

3023 {} is an invalid GET parameter. 400

3024 Resource pkid(s) must be specified 400

3025 Request was throttled. 429

3026 Invalid UTC date format given: {0}, requires: {1} or {2} 400

3027 The current filter caused a long running request. Please add more filter
fields, use Case Sensitive or change the criteria types to one of {}.

400

3028 Model Instance Filter [{}] not found at or above the current hierarchy. 400

continues on next page

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

50

3.2. Error Messages

Table 4 – continued from previous page

ApiError Message HTTP
Code

3029 Purge failed, error [{}] 400

3030 Model Type List of [{}] type not valid for [{}] sync. 400

3031 Model Instance Filter of [{}] type not valid for [{}] sync. 400

3032 {} GET parameter has an invalid value. 400

3999 Unhandled API Error 400

AuthEr-
ror_11_5_3

Message HTTP
Code

27000 {} (INCORRECT_PASSWORD_ERROR) 403

27001 {} (PASSWORD_VERIFICATION_ERROR) 403

27002 {} (USER_NOT_FOUND_ERROR) 404

27003 {} (LOGIN_NOT_ALLOWED_ERROR) 403

27004 Account locked. Please contact your administrator. 403

27005 Too many failed login attempts for this user account. Try again later. 403

27006 Too many failed login attempts from this computer. Try again later. 403

27007 Your Web browser doesn’t appear to have cookies enabled. Cookies are
required for logging in.

400

27008 User is not allowed to log in. 403

27009 Please enter a valid username and password. 403

27010 This account is inactive. 403

27011 User account password must be changed before any API requests are
authorized.

403

27012 {} (ACCOUNT_DISABLED) 403

27013 External (SSO or LDAP) authentication is required. 403

27014 Please enter valid answers to security questions. 403

27015 Password reset is not available for user. 403

27016 Security questions and answers not set up. 403

27017 User can not log in to this interface. 403

27018 User is disabled due to inactivity 403

27019 User is not allowed to login. Please contact your administrator. 403

27020 Login is currently disabled due to a temporary overload. Please try again
later.

503

27021 User is not allowed to log in. Maximum user login sessions has been
reached.

403

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

51

3.2. Error Messages

DatabaseError Message HTTP
Code

2000 Cannot setup Mongo DB collection {} 400

2001 Find failed with spec={}, fields={}, skip={}, limit={}, sort_by={}, err={} 400

2002 Find one failed with spec={}, fields={}, err={} 400

2003 Get archive history failed with spec={}, fields={}, skip={}, limit={}, err={} 400

2004 Remove failed with spec={}, err={} 400

2005 Find and modify failed with spec={}, modify={}, err={} 400

2006 Save failed with spec={}, modify={}, err={} 400

2007 Count failed for {} 400

2008 Find failed with spec={}, fields={}, err={} 400

2009 Duplicate error with spec={}, modify={}, err={} 400

2010 Found more than one record with spec={} 400

2100 Error, Cannot connect to RESOURCE database collection 400

2101 Error, Cannot connect to DATA database collection 400

2102 Error, Cannot connect to ARCHIVE database collection 400

2103 Aggregate failed with group_by={}, match={}, aggregations={}, sort={},
err={}

400

2104 Bulk insert failed, err={} 400

2106 Bulk write failed, err={} 400

2107 Distinct failed with key={}, spec={}, err={} 400

2108 Explain not implemented for {} 400

2999 Unhandled Database Error 400

Authentication-
ProxyError

Message HTTP
Code

32000 Cannot decode target user from authentication proxy. Error: {} 400

32001 Insufficient target user details specified by authentication proxy. Target
user details must be contained in a JSON-formatted object with an email
attribute.

400

32002 User [{}] is not a valid authentication proxy. 400

32003 Proxy user must be at a hierarchy above that of the target user. 400

32004 Error, {} (UNHANDLED_ERROR) 500

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

52

3.2. Error Messages

LibSchemaError Message HTTP
Code

9000 Unhandled schema property error: [{}] 400

9001 Unhandled schema and data processing error: [{}] 400

9002 Data type incorrect, property: {}, not of type: {} 400

9999 Error, (UNHANDLED_ERROR) 400

RbacError Message HTTP
Code

16000 Permission denied: {}. 400

16001 User not found. 400

16002 Role not specified; User [{}] 400

16003 Access profile not specified; User [{}], Role [{}] 400

16004 Role not found; User [{}], Role [{}] 400

16005 Access profile not found; User [{}], Role [{}], Access Profile [{}] 400

16006 User [{username}] is not allowed to {operation} attribute(s) of
{model_type} resource [{pkid}]. Attribute(s) in breach: {breach_attrs}.
This operation must be performed by the user’s administrator.

403

16007 User [{username}] is not allowed to {operation} {model_type} resource
[{pkid}]. This operation must be performed by the user’s administrator.

403

16008 Invalid authorization token detected. 403

16009 Role not found; Hierarchy [{}], Role [{}] 400

16010 Access profile [{}] not found for Role [{}] in or above Hierarchy [{}] 400

16011 Access profile of role [{}] is not a subset of the request user’s. 400

16012 SelfService Access Profile [{}] for Role [{}] at Hierarchy [{}] must not be
created outside ‘sys’ hierarchy.

400

16999 Error, (UNHANDLED_ERROR) 400

SsoSettingsError Message HTTP
Code

30000 Invalid certificate file found. 400

30001 Invalid key file found. 400

30002 Validity must not be negative or larger than {} hours ({} years). 400

ApiVersionError Message HTTP
Code

38000 Invalid API header version specified: {}. 400

38001 No API version mapping defined. 400

38002 API header version: {} and API parameter version: {} mismatch 400

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

53

3.2. Error Messages

ExportError Message HTTP
Code

36000 The export format is not specified in request. 400

36001 The specified export format is not supported. 415

36002 The worksheet was not initialized and can not be exported. 500

36100 License audit file transfer failed. 400

36101 tool/DataExtract failed for ‘{}’. 400

36102 A malformed record with pkid: ‘{}’ and model_type: ‘{}’ has been encoun-
tered.

400

DataImportError Message HTTP
Code

11000 Multiple json files {} found in zip archive root; only 1 expected 400

11001 Import file validation failed with: {} 400

11999 Error, (UNHANDLED_ERROR) 400

InterfaceError Message HTTP
Code

50000 Invalid interface value [{}] for header ‘X_INTERFACE’ 403

50001 No access profile associated with Interface [{}] 403

BulkLoad-
MacroError

Message HTTP
Code

60000 Data type must be {} 400

60001 Invalid bulk load macro format {}. Supported format: {} 400

MigrationError Message HTTP
Code

21000 Post condition failed. {} 400

21999 Error, {} (UNHANDLED_ERROR) 400

CryptoError Message HTTP
Code

19000 Cryptography validation failed; {}. 400

19999 Error, (UNHANDLED_ERROR) 400

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

54

3.2. Error Messages

Saml2SsoError Message HTTP
Code

14000 Could not find SSO settings; Hierarchy: {}. 400

14001 Found multiple SSO settings, only one expected; Hierarchy: {}. 400

14002 Could not find SSO Identity Provider; Hierarchy: {}, IDP uri: {}. 400

14003 Could not resolve SSO Identity Provider; Hierarchy: {}, IDP uri: {}. 400

14004 System generated certificate expected but not specified in
data/SsoSettings.

400

14005 System generated certificate has an invalid private key. 400

14006 System generated certificate has an invalid certificate. 400

14007 Unknown principal: {}. 400

14008 Unsupported binding: {}. 400

14009 Verification error: {}. 400

14010 SubjectConfirmation is used but there is no NotOnOrAfter attribute 400

14012 NotBefore and NotOnOrAfter should be present when using either in
Condition

400

14013 OneTimeUse element should be present when neither NotBefore nor
NotOnOrAfter attributes in Condition

400

14014 Only one OneTimeUse element should be present in Condition 400

14015 Unencrypted assertions are not allowed 400

14016 The session cannot be used yet 400

14999 Error: {}. (UNHANDLED_ERROR) 400

ScriptError Message HTTP
Code

8000 Script not found 400

8002 Syntax error on line {} 400

8003 Could not connect to {} 400

8004 Authentication failed {} 400

8999 Error, (UNHANDLED_ERROR) 400

Hierarchy-
BasedAccessEr-
ror

Message HTTP
Code

22000 Invalid traversal argument: ‘{}’; Traversal must be one of {}. 400

22001 {model_type} with {attr_name} {attr_value} is only permitted at the follow-
ing hierarchy type(s): {hierarchy_types}.

403

22999 Error, {} (UNHANDLED_ERROR) 400

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

55

3.2. Error Messages

TestConnection-
Error

Message HTTP
Code

12000 Please specify the model type of the device connection parameters 400

12999 Error, (UNHANDLED_ERROR) 400

SysError Message HTTP
Code

0 Error, Mongo service not started 400

1 Error, Server too busy 400

2 Error, Celery service not started 400

PlatformError Message HTTP
Code

28000 Could not execute platform command; Exit code: {} 500

28999 Error, {} (UNHANDLED_ERROR) 500

InternalApiUser-
Error

Message HTTP
Code

18000 Authorization user [{}] not found. 400

18999 Error, (UNHANDLED_ERROR) 400

SystemMoni-
toringError

Message HTTP
Code

70000 Aggregate {} is not supported by {} 400

72051 Connectivity failure 400

72052 Slow connection 400

72053 Utilization approaching limit 400

72054 Transactions queued for too long 400

72055 Transactions processing for too long 400

RisApiError Message HTTP
Code

80000 RIS API data collection failed for {} 400

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

56

3.2. Error Messages

ThemeError Message HTTP
Code

90000 Theme name {} is reserved for system use. Please choose another
name. RIS API data collection failed for {}

400

ClientShapeError Message HTTP
Code

100000 File operation error: ‘{}’ 400

ClientShapeWarn-
ing

Message HTTP
Code

105000 System has not yet been linked to an account in ClientShape 400

105001 System is already linked to an account in ClientShape 400

105002 System has already been registered in ClientShape 400

NumberInventory-
Error

Message HTTP
Code

110000 Number inventory threshold reached: ‘{}’ 400

111000 Failed to write the User Number Inventory CSV file to the configured
NFS destination: ‘{}’

400

License Checking Message HTTP
Code

120000 <LicenseCheckError>

120001 <LicenseCheckExpiredError>

120002 <LicenseCheckExpiryNotice>

120003 <LicenseCheckServiceError>

120004 <LicenseCheckAppNotReadyError>

120000-120999

License Audit Message HTTP
Code

140000 The software version of the platform could not be determined. 400

140000 - 140099

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

57

4. Tool APIs

4.1. Introduction to Tool APIs

This section describes API calls that are not related to a specific model. The full URL would include the host
name: http://[hostname].

The calls described here all contain /tool/ in the URL and the full list can be obtained by the GET call for
choices:

Task Call URL Parameters Response

List tools GET /api/tool/choices/ format=json
hierarchy=[hierarchy]

JSON format of the list of tools
as title - value pairs.

Variables are enclosed in square brackets, e.g.:

• [hierarchy] is the hierarchy UUID

• [filename] refers to a file

Other parameters are described with the relevant API call.

4.2. Search and Search Result Export

For an API call that carries out a search, a POST payload in JSON format is added.

Task Call URL Parameters Payload

Search POST /api/tool/Search/ format=json
hierarchy=[hierarchy]

{“query”:”[query]”}

The value of [query] follows Search syntax, for example:

{"query":"data/Countries with country_name contains King"}

While the default search direction is down, a second parameter can be added to [query] to indicate the
hierarchy direction to search. These are enabled by adding a value true:

• hierarchy_paths - up the hierarchy

58

4.2. Search and Search Result Export

• hierarchy_shallow - at the local hierarchy

• hierarchy_all - up and down the hierarchy

For example, if the user making the API call is at sys.hcs, then a call payload like:

{"query":"relation/Bundle with name is 'HcsBase' ", "hierarchy_paths":true}

will also search up the hierarchy path.

The parameter filter_hierarchy can also be used to filter the hierarchy of search results. Specifying a
hierarchy to which the user has no access will return a Permission Denied error.

Note:

• If for both hierarchy=sys.hcs and filter_hierarchy=sys.hcs.CSP for example are used, then
filter_hierarchy=sys.hcs.CSP takes precedence.

• If for neither hierarchy=sys.hcs nor filter_hierarchy=sys.hcs.CSP for example are used, then the
user’s hierarchy is applied.

The Request payload can also be a GET parameter, for example:

Task Call URL Parameters Response

Search GET /api/tool/Search/ format=json
hierarchy=[hierarchy]
filter_hierarchy=[hierarchy]
query=[url_query]

JSON format of the search re-
sult.

The value of [url_query] is URL encoded string, for example:

data/Countries%20with%20country_name%20contains%20King

Furthermore, the meta property of the schema in the response to /api/tool/Search/ contains action details
for the export of search results. This includes the URL for the data export POST request:

/api/export/export_data/?url=/api/tool/Search/

as well as the URL:

/api/view/ExportData/add

which has a schema that lists the data export data type choices that will be used as a parameter to the POST
call.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

59

4.3. Bulk Load API

4.3. Bulk Load API

Two API calls are required.

Task Call URL Parameters Response

Submit
file

POST

/api/
uploadfiles/

This URL will
be moved to
tool/UploadFile in
future.

hierarchy=[hierarchy]
Content-Type:

multipart/form-data

name='uploadedfile'
filename=<filename>
the file to upload

{"uploadedfiles":
[{"id": "<file_id>",
"name": "<filename>"}]}

The response is HTTP 202

Task Call URL Parameters Payload

Bulk
Load

POST

/api/tool/
BulkLoad/

method=
bulkload_spreadsheet

hierarchy=[hierarchy]

Examples:

{'bulkload_file':
'<filename>',

'execute_immediately':
true}

or:

{'bulkload_file':
'<filename>',

'execute_immediately':
false

'execute_date':
'2013-06-20',

'execute_time':
'12:00:00',

'execute_timezone':
'0'}

The following curl commands illustrate the two steps:

Step 1

curl -H 'Authorization: Basic <auth_key>'
-F uploadedfile="@<file>.xlsx"
'http://<hostname>/api/uploadfiles/'

Step 2

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

60

4.3. Bulk Load API

curl -H 'Authorization: Basic <auth_key>'
-H 'Content-Type: application/json'
-H 'accept: application/json'
--data-binary '{"bulkload_file":"DEMO.xlsx","execute_immediately":true}'
'http://<host>/api/tool/BulkLoad/?hierarchy=[hierarchy]&

method=bulkload_spreadsheet&
nowait=true&
format=json'

The response to this call is for example as in the following table.

Response

{"href": "/api/tool/Transaction/0b340a6f-b658-48bb-ac8c-7562adc5572d",
"success": true,
"transaction_id": "0b340a6f-b658-48bb-ac8c-7562adc5572d"}

• If the Bulk Load is to be scheduled, the payload of the second task includes schedule details:

– execute_immediately is set to false

– execute_date is added in the format YYYY-MM-DD

– execute_time is added in the format HH:MM:SS

– execute_timezone is added in the format of a numeric value in minutes relative to UTC. For
example, UTC is 0, UTC+2:00 is 120, UTC-1:00 is -60, and so on.

• An entry is also generated in the schedule; that is, an instance is added to the data/Schedule module.

• If the second task payload has ‘execute_immediately’:true, a POST is generated to /api/data/Bulkload/.
The payload includes the uploaded filename and a generated name and time stamp as well as a
description, for example:

{'filename': '<file>.xlsx', 'description': 'Generated by Bulk Loader
Administration Tools', 'name': 'AnyUser.xlsx -- 2013-05-21
16:47:11.801664 (UTC)'}

To inspect the detailed progress and status of the transaction, use the API call from the response above:

GET /api/tool/Transaction/[pkid]

with parameters:

• hierarchy=[hierarchy]

• format=json

The response to this GET call is a JSON object that provides details of the transaction, as for example in the
truncated snippet:

...
"href": "/api/tool/Transaction/[pkid]
"log_id": "53a8053ea616540708141f44",
"message": "data_Countries_bulkloadsheet.xlsx is a valid

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

61

4.3. Bulk Load API

(continued from previous page)

"severity": "info",
"time": "2014-06-23T10:45:18.029000",
"transaction_id": "[pkid]"

}
],
"pkid": "[pkid]",
"resource": {},
"rolled_back": "No",
"started_time": "2014-06-23T10:45:17.813000",
"status": "Success",
"sub_transactions": [
{
"action": "Execute Resource",
"detail": "Execute : data_Countries_bulkloadsheet.xlsx -- ...
"status": "Success",
"submitted_time": "2014-06-23T10:45:19.567000",
"transaction": "/api/tool/Transaction/[pkid1] ...

},
{
"action": "Create Schedule",
"detail": "Name:data_Countries_bulkloadsheet.xlsx -- 2014- ...
"status": "Success",
"submitted_time": "2014-06-23T10:45:18.912000",
"transaction": "/api/tool/Transaction/[pkid2] ...

},
{
"action": "Create Bulk Load",
"detail": "Name:data_Countries_bulkloadsheet.xlsx -- 2014-06 ...
"status": "Success",
"submitted_time": "2014-06-23T10:45:18.419000",
"transaction": "/api/tool/Transaction/[pkid3] ...

}
],
"submitted_time": "2014-06-23T10:45:17.794000",

On the GUI, the same transaction displays as in the Transaction log image.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

62

4.4. Move and Bulk Move

For long transactions, to retrieve a summary of the status of the transaction, the transaction can be polled,
using poll in the URL, using the same parameters:

GET /api/tool/Transaction/poll/?transactions=[pkid]

In this case, there is a shortened response, for example:

{"[pkid]":
{"status": "Processing",
"href": "/api/tool/Transaction/0b340a6f-b658-48bb-ac8c-7562adc5572d",
"description": null}

}

4.4. Move and Bulk Move

The following model types can be enabled for this operation:

• Data models

• Device models

• Relations

For an API call that carries out a move on a <model_type>, a POST payload in JSON format is added.

A move can only take place from a source hierarchy equal to or lower than [target_hierarchy].

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

63

4.5. Data Extract

• Task

Move the instance with [pkid] to [target_hierarchy]

Call URL Parameters Payload

POST /api/tool/DataMove/
?model_type=
<model_type>

format=json
hierarchy=[hierarchy]
context_hierarchy= [tar-
get_hierarchy] (nowait=true)

{“hrefs”:
[“/api/<model_type>/[pkid]”]}

• Task

Move one or more model instances ([pkid1], [pkid2],. . .) from source hierarchy (pkid or dot notation) to
target_hierarchy (pkid or dot notation).

Call URL Parameters Payload

POST /api/tool/DataMove/
?model_type=
<model_type>

format=json
hierarchy=[hierarchy]
context_hierarchy= [tar-
get_hierarchy] (nowait=true)

{“hrefs”:
[“/api/relation/Subscriber/[pkid1]”,
“/api/relation/Subscriber/[pkid2]”,
. . .]}

For a list of hierarchy pkids and their dot notation available from [hierarchy], use the GET call:

GET api/relation/<model_type>/
?hierarchy=[hierarchy]
&format=json
&schema_rules=true

4.5. Data Extract

Two endpoints are available:

operations

Get the available DataExtract operations endpoints.

GET api/tool/DataExtract/operations/
?hierarchy=[hierarchy]
&format=json

Returned payload:

{"meta":
{"query":"/api/tool/DataExtract/operations/

?hierarchy=[hierarchy]
&format=json"},

"choices":[

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

64

4.5. Data Extract

(continued from previous page)

{"value":"execute",
"title":"Execute"},

{"value":"help",
"title":"Help"},

{"value":"nbi_subscriber",
"title":"Nbi Subscriber"},

{"value":"read",
"title":"Read"}]

}

nbisubscriber

For example, on a system with NBI deployed, get the subscriber data for subscriber instance with <PKID>:

GET api/tool/DataExtract/nbisubscriber/<PKID>/
?hierarchy=[hierarchy]
&format=json

Returned payload:

{
"FirstName": "NBI",
"LastName": "User EKB-9492",
"ActivationDate": "2021-06-17T00:00:00",
"Location": "CL1-AB-C-Berlin",
"Email": "NBIUser@nbivoss.onmicrosoft.com",
"Username": "NBIUser",
"ExternalID": "EKB-8003-AB-C-BE",
"Customer": "AB_Group",
"Lines": [
{
"DDI": "+494215381218",
"ExtensionNumber": "8211218"

},
{
"DDI": "+494215381227",
"ExtensionNumber": "8211227"

}
],
"Devices": [
{
"Model": "Microsoft Teams",
"Name": "MSTNBIUser@nbivoss.onmicrosoft.com"

}
],
"FMC": {},
"EndUserVoicemail": false,
"HardwareGroup": "[\"AB_Group-Germany-CL1-NDL\", \"hcs.CS-P.CS-AB.AB_Group\"]",
"MobilityProfiles": [
{

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

65

4.6. Custom Workflows

(continued from previous page)

"Model": "Cisco 6921",
"Name": "NBIUser-UDP"

}
]
}

4.6. Custom Workflows

Custom Workflows can be added to:

• Domain Models

• Relations

A Custom Workflow can be called from a model instance.

The usage in the URLs and parameters below are:

[model]

• Domain Model [domain/DomainModelName]

• Relation [relation/RelationName]

[pkid]

Model instance pkid

[CustomWF]

Custom Workflow name. The name is of the format add-, del- to indicate the operation type.

• For Domain Models, the Custom Workflow name suffix corresponds with a Group name of Domain
Model attributes.

• For Relations, the Custom Workflow name suffix corresponds with the alias of the joined model type.

To get the payload schema for a Custom Workflow, carry out a list API call for the instance, with parameters:

Task Call URL Parameters

Get payload
schema

GET /api/[model]/[pkid]/ hierar-
chy=[hierarchy]
format=json
schema=true
schema_rules=true

The response contains:

• The action to carry out the Custom Workflow. For example, for an add action on a domain model
DOMAIN100 instance with a group name or alias called ADDRESS:

AddADDRESS: {
href: "/api/domain/DOMAIN100/523c2213a61654174273ab07/+AddADDRESS/"
title: "Addaddress"

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

66

4.6. Custom Workflows

(continued from previous page)

schema: "ADDRESS"
method: "POST"
submit: "payload"
class: "add"
}

• The schema of the model in the response contains the specification of the submit payload for the
Custom Workflow.

Task Call URL Parameters Pay-
load

Call Cus-
tom add
workflow

POST /api/domain/[model]/[pkid]/+[CustomWF]/ hierar-
chy=[hierarchy]

See
below

Payload for grouped attributes is defined in the schema that is returned from the GET call above. For PUT
methods the resource data is replaced with the data specified in the request. All fields of the resource is
replaced with the fields in the request.

This means that:

• fields not present in the request that are present in the resource will be dropped from the resource

• fields present in the request that are not present in the resource will be appended to the resource

• the data of fields present in the request is used to update fields that already exist in the resource

PATCH methods operate in two modes depending on the content type:

• Content type: application/json

• The values of data fields present in the request is used to update the corresponding resource fields.
This means that:

– Fields present in the request but not in the resource is appended to the resource. The value of
each field that is already present in the resource is updated from the request data.

Note: Field values that are set to null in the request is dropped from the resource. Fields that are present in
the resource but not in the request are left untouched.

Content type: application/json-patch+json

Existing resource data is patched according to RFC6902.

Modifying data fields:

• To drop the field from a data model, specify null as the parameter value (i.e. {"field": null})

• To blank out a string value set the parameter value to an empty string (i.e. {"field":""})

• When the key (field name) appears in the field for a parameter, then the field is updated with the
supplied value.

• Any field that is not specified in the request will be left untouched

• When a key (field name) is specified but no value is supplied, or an empty string is supplied, the value
is blanked out or set to NULL

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

67

5. Transactions

5.1. List Transactions

To list transactions on the system use the following operation

GET https://<server_address>/api/tool/Transaction/
?hierarchy=[hierarchy]
&format=json
&summary=true

The following query parameter illustrates how a second page of 50 transactions in the transaction log is
requested.

skip=50
&limit=50
&hierarchy=[hierarchy]
&format=json
&summary=true
&direction=desc
&order_by=submitted_time

For further information on the query parameters refer to API Parameters above.

The synchronous response contains:

• pagination information

• meta data specifying the summary attributes of the transaction log view

• resources containing a list of the transactions in the transaction log

5.2. Get Instance Transactions

The status of a specific transaction can be retrieved by using a GET call to /tool/Transaction for a specific
transaction pkid (also referred to as transaction ID or transaction_id). The transaction_id is available in for
example the synchronous response to an asynchronous mutator transaction.

For example, if the transaction_id in the response is [pkid], then the transaction can be polled with:

GET https://<server_address>/api/tool/Transaction/[pkid]

68

5.3. Poll Transactions

The GET response data section of the JSON content for a transaction also shows:

• submitter_host_name: the host name of the application node that scheduled the transaction.

• processor_host_name: the host name of the application node that processed the transaction (this
value will only be set once the transaction is processed).

On a clustered system, these attributes make it possible to distinguish between the application nodes on
which the transaction was respectively scheduled and processed.

Refer to the examples in the API Response topics, in particular, the topics POST/PUT/DELETE/PATCH
Response and Asynchronous Mutator Transaction Status Callback.

5.3. Poll Transactions

It is recommended to use asynchronous transaction call back mechanism described in “Asynchronous
Mutator Transaction Status Callback”. If this can however not be used a consumer of the VOSS Automate
API can also use this polling mechanism to poll the status of individual transactions using the poll action of
the transaction tool. A user interface that allows a user to monitor the progress of a given transaction can
use the following method to retrieve the status of a given transaction:

GET /api/tool/Transaction/[pkid]/poll/?format=json

The response contains essential status of the transaction, for example:

{
[pkid]: {

status: "Success",
href: "/api/tool/Transaction/[pkid]",
description: "Name:RDP-auser1857 Description:RD for auser1857"

}
}

5.4. Replay Transactions

Transactions that have failed can, under certain circumstances, be replayed. This means that the transaction
is re-submitted with the original request parameters. This is done by specifying the pkid of the transaction

GET https://<server_address>/api/tool/Transaction/[pkid]/replay/

The transaction current operation replays the transaction and the result returns the list view of the transaction
log.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

69

5.5. Edit and Replay Transactions

5.5. Edit and Replay Transactions

Transactions can, under certain circumstances, be edited and then replayed. This means that the transaction
is re-submitted with the updated request parameters. This is done by specifying the pkid of the transaction:

GET https://<server_address>/api/tool/Transaction/[pkid]/edit-replay/

The transaction current operation edit and then replays the transaction and the result returns the list view of
the transaction log.

5.6. Sub Transactions

The sub-transactions of a transaction with pkid can be retrieved by submitting the following URI

GET https://<server_address>/api/tool/Transaction/[pkid]/sub_transaction/

5.7. Log Transactions

The log messages of a transaction with pkid can be retrieved by submitting the following URI

GET https://<server_address>/api/tool/Transaction/[pkid]/log/

5.8. Transaction Choices

A URL endpoint and parameter is available to list the transaction actions as they may be shown in the
transaction log.

• The API call to get the list of transaction actions uses the parameter and value: field=action, for
example:

GET api/tool/Transaction/choices/?
field=action&
hierarchy=[hierarchy]&
format=json

The output shows the list of transaction actions:

[
{
"value": "Auto Migrate Base Customer Dat",
"title": "Auto Migrate Base Customer Dat"

},
{
"value": "Auto Migrate Base Provider",

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

70

5.9. Transaction Filters

(continued from previous page)

"title": "Auto Migrate Base Provider"
},
{
"value": "Auto Migrate Base Site Dat",
"title": "Auto Migrate Base Site Dat"

},
{
"value": "Auto Migrate Dial Plan",
"title": "Auto Migrate Dial Plan"

},
{
"value": "Auto Migrate Feature Subscriber Phone Cft",
"title": "Auto Migrate Feature Subscriber Phone Cft"

},
{
"value": "Auto Migrate Hotdial Data",
"title": "Auto Migrate Hotdial Data"

},
{
"value": "Auto Migrate Init Ippbx",
"title": "Auto Migrate Init Ippbx"

},
{
"value": "Auto Migrate Internal Number Inventory",
"title": "Auto Migrate Internal Number Inventory"

},

...

5.9. Transaction Filters

In addition to the filter parameters that can be applied to transactions as indicated in the topic on API
Parameters, transactions in particular can be filtered:

• By the following values for the URL parameter filter_field:

– Transaction ID: id

– Start or end submitted time: submitted_time

– The transaction message: message

• By also listing sub transactions using the URL parameter and value subtransactions=true. By default,
sub transactions are not listed, in other words, the value is false.

• To carry out a filter on sub-transactions of a parent transaction, the /sub-transactions/ endpoint is
added to the GET request:

/api/tool/Transaction/[parent-pkid]/sub-transactions/

• To carry out a filter on transaction logs of a parent transaction, the /logs/ endpoint is added to the
GET request:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

71

5.9. Transaction Filters

/api/tool/Transaction/[parent-pkid]/log/

The transaction filters do not apply to logs.

The parameters can have the filter_condition values:

• eq (equals)

• ne (not equals)

• gt (greater than)

• gte (greater than or equals)

• lt (less than)

• lte (less than or equals)

The date-time is a filter_text value for filter_field=submitted_time.

The format follows RFC3339: [https://tools.ietf.org/html/rfc3339] and is YYYY-MM-
DDTHH:MM:SS.fZ, where:

• “T” is the time separator and the character should be added.

• “Z” indicates UTC time and the character should be added.

• “f” represents the decimal fraction of a second and the character should not be added. The specification
of the decimal fraction is optional.

For example:

June 29 2016 14 hours 41 minutes 0.01 seconds UTC, is:

2016-06-29T14:41:00.01Z

To filter for transactions after this date-time, the API call is:

GET api/tool/Transaction/?
hierarchy=[hierarchy]
&format=json
&filter_field=submitted_time
&filter_text=2016-06-29T14:41:00.01Z
&filter_condition=gt

To filter between transaction IDs or times, two parameter sets are needed.

For example:

• To filter transaction IDs between 12000 and 13000:

GET api/tool/Transaction/?
hierarchy=[hierarchy]
&format=json
&filter_field=id
&filter_text=12000
&filter_condition=gt
&filter_field=id
&filter_text=13000
&filter_condition=lt

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

72

5.9. Transaction Filters

• To filter transactions between June 29 2016 14 hours 41 minutes UTC and June 29 2016 15 hours 41
minutes UTC (no fraction of a second in the example):

GET api/tool/Transaction/?
hierarchy=[hierarchy]
&format=json
&filter_field=submitted_time
&filter_text=2016-06-29T14:41:00Z
&filter_condition=gt
&filter_field=submitted_time
&filter_text=2016-06-29T15:41:00Z
&filter_condition=lt

If the upper or lower bound in the filter are not available, the transactions with values between the filter values
and the bound are returned.

When the URL parameter subtransactions=true is used, the data object in the JSON API response shows:

• a parent transaction has: parent: null

• a sub transaction has: parent: <pkid>, where <pkid> is the value of the parent attribute pkid.

The example snippets below show the values of parent:

data: {
username: "system",
status: "Success",
description: "",
parent: null,
pkid: "01a559c5-e77f-40e7-8403-683d7204d1e1",
friendly_status: "Success",
detail: "HcsLdapSyncSchedule--1",
action: "Execute Schedule",
href: "/api/tool/Transaction/01a559c5-e77f-40e7-8403-683d7204d1e1/",
txn_seq_id: "17693",
data_type_: "tool/Transaction",
message: "",
submitted_time: "2016-07-14T12:13:41.758000Z"

}

data: {
username: "system",
status: "Success",
description: "",
parent: "f4daa234-590d-4002-a3b0-8c329c583d1d",
pkid: "019f44a3-df6e-4e4f-86f3-a09a6b91e482",
friendly_status: "Success",
detail: "10.120.2.221",
action: "Import Ldap",
href: "/api/tool/Transaction/019f44a3-df6e-4e4f-86f3-a09a6b91e482/",
txn_seq_id: "17695",
data_type_: "tool/Transaction",
message: "models completed.",
submitted_time: "2016-07-14T12:13:43.075000Z"

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

73

5.9. Transaction Filters

(continued from previous page)

}

• In the case of a transaction error, the message attribute value will show the corresponding error message.
If a custom message was defined in a provisioning workflow, and the response is the result of the
workflow, the value will be the custom message.

To filter transaction messages, the parameter filter_field=message is used, with at least one of the
following additional filter criteria:

– a date range of maximum 7 days using submitted_time

– an additional filter_field, with one of the conditions:

* filter_condition=contains

* filter_condition=startswith

Also required is the case sensitive parameter:

* ignore_case

Note that a filter is by default case insensitive. If the case is explicitly set, then it should be added
to each filter parameter group in order to ensure proper parameter grouping.

The additional criteria do not apply to sub-transaction message filters, because the [parent-pkid] in
the URL serves as an additional filter.

The example below is a message filter that contains “Invalid business key”, by date range:

GET api/tool/Transaction/?
hierarchy=[hierarchy]
&format=json
&filter_field=submitted_time
&filter_text=2016-06-25T14:41:00Z
&filter_condition=gt
&ignore_case=false
&filter_field=submitted_time
&filter_text=2016-06-29T15:41:00Z
&filter_condition=lt
&ignore_case=false
&filter_field=message
&filter_text=Invalid%20business%20key
&filter_condition=contains
&ignore_case=false

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

74

6. API Examples

6.1. API Examples Overview and Conventions

The example sections illustrate the use of the API for a number of calls, using the curl command line tool.
Each example shows the command and the console output.

• API calls are illustrated:

– From server http://localhost

– Referencing a relation: relation/LineRelation.

• User authorization is for two administrator users:

– one user has additional permissions to import and bulk load.

– The Authorization header and hierarchy parameter in the URL identify the two users.

– Field Display Policies and Configuration Templates in URL parameters can differ according to
the MenuLayout associated with the user role, for example, &policy_name=LineMenuFDPSite is a
Field Display Policy applied to relation/LineRelation from a Site administrator user menu.

• Where a response to an API call shows an instance of /api/tool/Transaction/, the transaction
instance details can be inspected with a GET call to this instance. An example is shown in this section.

• Some payload files and console output is truncated (indicated with ellipses or text: “snippets”).

• Line breaks have been added to console output in the examples for better formatting.

• The a selection of the MS Excel bulk load sheet LineRelation.xlsx columns are shown in a table.

6.2. POST

• task: POST and instance of relation/LineRelation

• user: site administrator

• hierarchy: 55b9dc81a6165413b9d16ab6

• Field Display Policy: LineMenuFDPSite

• Configuration Template: line-cft

$ curl -v
-H 'Authorization: Basic YWRtaW5AbG9jdXMxLmNvbTpwYXNzd29yZA=='
-H 'Content-Type:application/json'

(continues on next page)

75

6.2. POST

(continued from previous page)

--data-binary @post-payload.json
-X POST 'http://localhost/api/relation/LineRelation/

?hierarchy=55b9dc81a6165413b9d16ab6
&policy_name=LineMenuFDPSite
&template_name=line-cft
&nowait=true
&format=json'

+ About to connect() to localhost port 80 (#0)
+ Trying 127.0.0.1... connected
> POST /api/relation/LineRelation/

?hierarchy=55b9dc81a6165413b9d16ab6
&policy_name=LineMenuFDPSite
&template_name=line-cft
&nowait=true
&format=json HTTP/1.1

> Authorization: Basic YWRtaW5AbG9jdXMxLmNvbTpwYXNzd29yZA==
> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu)

libcurl/7.22.0
OpenSSL/1.0.1
zlib/1.2.3.4
libidn/1.23
librtmp/2.3

> Host: localhost
> Accept: */*
> Content-Type:application/json
> Content-Length: 1941
> Expect: 100-continue
>
< HTTP/1.1 100 Continue
< HTTP/1.1 202 ACCEPTED
< Server: nginx/1.1.19
< Date: Thu, 30 Jul 2015 13:10:46 GMT
< Content-Type: application/json
< Transfer-Encoding: chunked
< Connection: keep-alive
< Vary: Accept, Cookie, Accept-Language, X-CSRFToken
< Content-Language: en-us
< Allow: GET, POST, DELETE, HEAD, OPTIONS
< X-CSRFToken: d2q7nV4aWDWFpuazsnRvJVMcj9qX5Ksg
< Set-Cookie: csrftoken=d2q7nV4aWDWFpuazsnRvJVMcj9qX5Ksg;

SameSite=Lax;
httponly;
Path=/

< Set-Cookie: sessionid=hahbo0wy7sa8u8rfaiz2tcqxvkvwshp8;
SameSite=Lax;
httponly;
Path=/

<
+ Connection #0 to host localhost left intact
+ Closing connection #0
{"href": "/api/tool/Transaction/aff36c0b-ff6a-431b-be58-d2f636edb7cd/",

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

76

6.3. GET

(continued from previous page)

"success": true,
"transaction_id": "aff36c0b-ff6a-431b-be58-d2f636edb7cd"}

Snippet of the file: post-payload.json:

{
"data": {
"partyEntranceTone": "Default",
"cfaCssPolicy": "Use System Default",
"autoAnswer": "Auto Answer Off",
"callForwardNotRegisteredInt": {
"callingSearchSpaceName": "Intl24HrsEnh-locus1"

},
"routePartitionName": "Site-locus1",
"callForwardOnFailure": {
"callingSearchSpaceName": "Intl24HrsEnh-locus1"

},
"shareLineAppearanceCssName": "Intl24HrsEnh-locus1",
"callForwardBusy": {
"callingSearchSpaceName": "Intl24HrsEnh-locus1"

},
"pattern": "90217",
"patternPrecedence": "Default",
"callForwardNoAnswer": {
"callingSearchSpaceName": "Intl24HrsEnh-locus1"

},
"callForwardNoCoverage": {
"callingSearchSpaceName": "Intl24HrsEnh-locus1"

},
"callForwardNotRegistered": {
"callingSearchSpaceName": "Intl24HrsEnh-locus1"

},
"usage": "Device",
"alertingName": "techsupport",
"enterpriseAltNum": {
"isUrgent": false,
"addLocalRoutePartition": false,
"advertiseGloballyIls": true

6.3. GET

• task: GET all instances of relation/LineRelation

• user: site administrator

• hierarchy: 55b9dc81a6165413b9d16ab6

• Field Display Policy: LineMenuFDPSite

• Configuration Template: line-cft

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

77

6.3. GET

curl -v
-H 'Authorization: Basic YWRtaW5AbG9jdXMxLmNvbTpwYXNzd29yZA=='
'http://localhost/api/relation/LineRelation/
?hierarchy=55b9dc81a6165413b9d16ab6
&policy_name=LineMenuFDPSite
&template_name=line-cft
&nowait=true
&format=json'

+ About to connect() to localhost port 80 (#0)
+ Trying 127.0.0.1... connected
> GET /api/relation/LineRelation/

?hierarchy=55b9dc81a6165413b9d16ab6
&policy_name=LineMenuFDPSite
&template_name=line-cft
&nowait=true
&format=json HTTP/1.1

> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu)
libcurl/7.22.0
OpenSSL/1.0.1
zlib/1.2.3.4
libidn/1.23
librtmp/2.3

> Host: localhost
> Accept: */*
> Authorization: Basic YWRtaW5AbG9jdXMxLmNvbTpwYXNzd29yZA==
>
< HTTP/1.1 202 ACCEPTED
< Server: nginx/1.1.19
< Date: Fri, 31 Jul 2015 08:51:11 GMT
< Content-Type: application/json
< Transfer-Encoding: chunked
< Connection: keep-alive
< Vary: Accept, Cookie, Accept-Language, X-CSRFToken
< Content-Language: en-us
< Allow: GET, POST, DELETE, HEAD, OPTIONS
< X-CSRFToken: GdcfnSz25RsL16Qe9lN6ESHBAw8ElDvM
< Set-Cookie: csrftoken=GdcfnSz25RsL16Qe9lN6ESHBAw8ElDvM; httponly; Path=/
< Set-Cookie: sessionid=7kj9nhbh2ra5r1awn40md0059ebm956k; httponly; Path=/
<

Snippet of one of the returned instances:

...

},
"pattern": "90124",
"patternPrecedence": "Default",
"callForwardNoAnswer": {
"destination": null,
"forwardToVoiceMail": false,
"callingSearchSpaceName": null

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

78

6.4. PUT

(continued from previous page)

},
"hrInterval": null,
"callForwardNoCoverage": {
"destination": null,
"forwardToVoiceMail": false,
"callingSearchSpaceName": null

},
"callForwardNotRegistered": {
"destination": null,
"forwardToVoiceMail": false,
"callingSearchSpaceName": null

},
"usage": "Device",
"summary_device": "10.120.2.216, 8443, prov1.cust1",
"hrDuration": null,
"parkMonForwardNoRetrieveVmEnabled": false,
"alertingName": "Helpdesk",
"description": "DN created without device from QAS.",
"directoryURIs": null,
"aarVoiceMailEnabled": false,
"hierarchy_path": "sys.prov1.cust1.locus1",
"parkMonForwardNoRetrieveIntCssName": null,
"parkMonForwardNoRetrieveDn": null,
"allowCtiControlFlag": true,
"defaultActivatedDeviceName": null,
"parkMonReversionTimer": null,
"releaseClause": "No Error",
"e164AltNum": {
"numMask": null,
"addLocalRoutePartition": false,
"advertiseGloballyIls": false,
"routePartition": null,
"isUrgent": false

},
"callForwardAll": {

...

6.4. PUT

• task: Update instance relation/LineRelation/55b9fe59a6165413b9d17628

• user: site administrator

• hierarchy: 55b9dc81a6165413b9d16ab6

• Field Display Policy: LineMenuFDPSite

• Configuration Template: line-cft

• Payload file: put-payload.json

Snippet of put-payload.json, showing the updated alertingName value to “Helpdesk”:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

79

6.4. PUT

...

{
"data": {
"partyEntranceTone": "Default",
"cfaCssPolicy": "Use System Default",
"autoAnswer": "Auto Answer Off",
"callForwardNotRegisteredInt": {
"forwardToVoiceMail": false

},
"routePartitionName": "Site-locus1",
"callForwardOnFailure": {
"forwardToVoiceMail": false

},
"rejectAnonymousCall": false,
"aarKeepCallHistory": true,
"callForwardBusy": {
"forwardToVoiceMail": false

},
"pattern": "90124",
"patternPrecedence": "Default",
"presenceGroupName": "Standard Presence group",
"callForwardNoAnswer": {
"forwardToVoiceMail": false

},
"callForwardNoCoverage": {
"forwardToVoiceMail": false

},
"callForwardNotRegistered": {
"forwardToVoiceMail": false

},
"usage": "Device",
"alertingName": "Helpdesk",

...

$ curl -v
-H 'Authorization: Basic YWRtaW5AbG9jdXMxLmNvbTpwYXNzd29yZA=='
-H 'Content-Type:application/json'
--data-binary @put-payload.json
-X PUT 'http://localhost/api/relation/LineRelation/55b9fe59a6165413b9d17628/

?hierarchy=55b9dc81a6165413b9d16ab6
&policy_name=LineMenuFDPSite
&template_name=line-cft
&nowait=true
&format=json'

+ About to connect() to localhost port 80 (#0)
+ Trying 127.0.0.1... connected
> PUT /api/relation/LineRelation/55b9fe59a6165413b9d17628/

?hierarchy=55b9dc81a6165413b9d16ab6
&policy_name=LineMenuFDPSite
&template_name=line-cft

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

80

6.5. DELETE

(continued from previous page)

&nowait=true
&format=json HTTP/1.1

> Authorization: Basic YWRtaW5AbG9jdXMxLmNvbTpwYXNzd29yZA==
> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu)

libcurl/7.22.0
OpenSSL/1.0.1
zlib/1.2.3.4
libidn/1.23
librtmp/2.3

> Host: localhost
> Accept: */*
> Content-Type:application/json
> Content-Length: 1926
> Expect: 100-continue
>
< HTTP/1.1 100 Continue
< HTTP/1.1 202 ACCEPTED
< Server: nginx/1.1.19
< Date: Thu, 30 Jul 2015 13:00:33 GMT
< Content-Type: application/json
< Transfer-Encoding: chunked
< Connection: keep-alive
< Vary: Accept, Cookie, Accept-Language, X-CSRFToken
< Content-Language: en-us
< Allow: GET, POST, PUT, PATCH, DELETE, HEAD, OPTIONS
< X-CSRFToken: GgxBBhTjkB2IUib2lHgIVzeohhmK2arc
< Set-Cookie: csrftoken=GgxBBhTjkB2IUib2lHgIVzeohhmK2arc;

SameSite=Lax;
httponly;
Path=/

< Set-Cookie: sessionid=8skxwiqojuyz5xl37cdcflbr5ct5ncrk;
SameSite=Lax;
httponly;
Path=/

<
+ Connection #0 to host localhost left intact
+ Closing connection #0
{"href": "/api/tool/Transaction/0bebcaa2-df37-420f-bd15-3a00ea056092/",
"success": true,
"transaction_id": "0bebcaa2-df37-420f-bd15-3a00ea056092"}

6.5. DELETE

• task: Delete instance relation/LineRelation/55ba2482a6165413b9d19fb8

• user: site administrator

• hierarchy: 55b9dc81a6165413b9d16ab6

• Field Display Policy: LineMenuFDPSite

• Configuration Template: line-cft

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

81

6.5. DELETE

$ curl -v
-H 'Authorization: Basic YWRtaW5AbG9jdXMxLmNvbTpwYXNzd29yZA=='
-X DELETE 'http://localhost/api/relation/LineRelation/55ba2482a6165413b9d19fb8/

?hierarchy=55b9dc81a6165413b9d16ab6
&policy_name=LineMenuFDPSite
&template_name=line-cft
&nowait=true
&format=json'* About to connect() to localhost port 80 (#0)

+ Trying 127.0.0.1... connected
> DELETE /api/relation/LineRelation/55ba2482a6165413b9d19fb8/

?hierarchy=55b9dc81a6165413b9d16ab6
&policy_name=LineMenuFDPSite
&template_name=line-cft
&nowait=true
&format=json HTTP/1.1

> Authorization: Basic YWRtaW5AbG9jdXMxLmNvbTpwYXNzd29yZA==
> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu)

libcurl/7.22.0
OpenSSL/1.0.1
zlib/1.2.3.4
libidn/1.23
librtmp/2.3

> Host: localhost
> Accept: */*
>
< HTTP/1.1 202 ACCEPTED
< Server: nginx/1.1.19
< Date: Thu, 30 Jul 2015 13:21:00 GMT
< Content-Type: application/json
< Transfer-Encoding: chunked
< Connection: keep-alive
< Vary: Accept, Cookie, Accept-Language, X-CSRFToken
< Content-Language: en-us
< Allow: GET, POST, PUT, PATCH, DELETE, HEAD, OPTIONS
< X-CSRFToken: a6fFDYZyk9ET8K8xTq9HITFrRi8TROrV
< Set-Cookie: csrftoken=a6fFDYZyk9ET8K8xTq9HITFrRi8TROrV;

SameSite=Lax;
httponly;
Path=/

< Set-Cookie: sessionid=9i0w39d1d32mdx6fs2skl564y8pmhmu9;
SameSite=Lax;
httponly;
Path=/

<
+ Connection #0 to host localhost left intact
+ Closing connection #0
{"href": "/api/tool/Transaction/01de8720-d627-4e53-8e1b-e1ad66edb7bd/",
"success": true,
"transaction_id": "01de8720-d627-4e53-8e1b-e1ad66edb7bd"}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

82

6.6. Bulk Load Example

6.6. Bulk Load Example

• task: Bulk load instances of relation/LineRelation/

• user: provider administrator

• hierarchy: 55b9daeca6165413b9d166de

• Bulk load file: LineRelation.xlsx

Snippet of file to Bulk load: LineRelation.xlsx

Hierarchy Node # Device # CFT Tem-
plate

Directory
Number

Alerting
Name

sys.prov1.cust1. lo-
cus1

10.120.2.216, 8443,
prov1.cust1

line-cft 90218 techsupport

sys.prov1.cust1. lo-
cus1

10.120.2.216, 8443,
prov1.cust1

line-cft 90219 techsupport

sys.prov1.cust1. lo-
cus1

10.120.2.216, 8443,
prov1.cust1

line-cft 90220 techsupport

sys.prov1.cust1. lo-
cus1

10.120.2.216, 8443,
prov1.cust1

line-cft 90221 techsupport

sys.prov1.cust1. lo-
cus1

10.120.2.216, 8443,
prov1.cust1

line-cft 90222 techsupport

Upload the file:

$ curl -v
-H 'Authorization: Basic YWRtaW5AcHJvdjEuY29tOnBhc3N3b3Jk'
-F uploadedfile='@LineRelation.xlsx'
'http://localhost/api/uploadfiles/
?hierarchy=55b9daeca6165413b9d166de'* About to connect() to localhost port 80 (

→˓#0)
+ Trying 127.0.0.1... connected
> POST /api/uploadfiles/?hierarchy=55b9daeca6165413b9d166de HTTP/1.1
> Authorization: Basic YWRtaW5AcHJvdjEuY29tOnBhc3N3b3Jk
> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu)

libcurl/7.22.0
OpenSSL/1.0.1
zlib/1.2.3.4
libidn/1.23
librtmp/2.3

> Host: localhost
> Accept: */*
> Content-Length: 10455
> Expect: 100-continue
> Content-Type: multipart/form-data;

boundary=----------------------------5a0f36378f19
>
< HTTP/1.1 100 Continue

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

83

6.6. Bulk Load Example

(continued from previous page)

< HTTP/1.1 200 OK
< Server: nginx/1.1.19
< Date: Thu, 30 Jul 2015 15:09:25 GMT
< Content-Type: text/html; charset=utf-8
< Transfer-Encoding: chunked
< Connection: keep-alive
< Vary: Accept-Encoding
< Vary: Accept, Cookie, Accept-Language, X-CSRFToken
< Content-Language: en-us
< Allow: POST, OPTIONS
< X-CSRFToken: C4ceiFEWSbjif1O4Jzhr1gZV9ytd9f2F
< Set-Cookie: csrftoken=C4ceiFEWSbjif1O4Jzhr1gZV9ytd9f2F;

SameSite=Lax;
httponly;
Path=/

< Set-Cookie: sessionid=07z03pbatb1qelahcc01ygufgzsr6i35;
SameSite=Lax;
httponly;
Path=/

<
+ Connection #0 to host localhost left intact
+ Closing connection #0
{"uploadedfiles": [
{"name": "LineRelation.xlsx",
"id": "55ba3e25a616541bb906b209"}

]}

Bulk load the file:

$ curl -v
-H 'Authorization: Basic YWRtaW5AcHJvdjEuY29tOnBhc3N3b3Jk'
-H 'Content-Type: application/json'
-H 'accept: application/json'
--data-binary '{"bulkload_file":"LineRelation.xlsx",

"execute_immediately":true}'
-X POST 'http://localhost/api/tool/BulkLoad/?

hierarchy=55b9daeca6165413b9d166de
&method=bulkload_spreadsheet
&nowait=true
&format=json'

+ About to connect() to localhost port 80 (#0)
+ Trying 127.0.0.1... connected
> POST /api/tool/BulkLoad/

?hierarchy=55b9daeca6165413b9d166de
&method=bulkload_spreadsheet
&nowait=true
&format=json HTTP/1.1

> Authorization: Basic YWRtaW5AcHJvdjEuY29tOnBhc3N3b3Jk
> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu)

libcurl/7.22.0
OpenSSL/1.0.1

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

84

6.7. Export Example

(continued from previous page)

zlib/1.2.3.4
libidn/1.23
librtmp/2.3

> Host: localhost
> Content-Type: application/json
> accept: application/json
> Content-Length: 64
>
+ upload completely sent off: 64out of 64 bytes
< HTTP/1.1 202 ACCEPTED
< Server: nginx/1.1.19
< Date: Thu, 30 Jul 2015 14:51:22 GMT
< Content-Type: application/json
< Transfer-Encoding: chunked
< Connection: keep-alive
< Vary: Accept, Cookie, Accept-Language, X-CSRFToken
< Content-Language: en-us
< Allow: GET, POST, HEAD, OPTIONS
< X-CSRFToken: iFh5q8FUBxoXyyiLcELHoO8W5IDFbAiP
< Set-Cookie: csrftoken=iFh5q8FUBxoXyyiLcELHoO8W5IDFbAiP;

httponly;
Path=/

< Set-Cookie: sessionid=3ayny2y73i43u6sj9bdyoawhhtr8wbm8;
httponly;
Path=/

<
+ Connection #0 to host localhost left intact
+ Closing connection #0
{"href": "/api/tool/Transaction/16e1e599-494a-4898-944a-0528915d2f42/",
"success": true,
"transaction_id": "16e1e599-494a-4898-944a-0528915d2f42"}

6.7. Export Example

• task: Export an instance relation/LineRelation/55ba3e55a6165413b9d1a18d as a formatted .xlsx
spreadsheet file called: 55ba3e55a6165413b9d1a18d.xlsx

• user: provider administrator

• hierarchy: 55b9daeca6165413b9d166de

$ curl -v
-H 'Authorization: Basic YWRtaW5AcHJvdjEuY29tOnBhc3N3b3Jk'
-o 55ba3e55a6165413b9d1a18d.xlsx
'http://localhost/api/relation/LineRelation/55ba3e55a6165413b9d1a18d/export/
?hierarchy=55b9daeca6165413b9d166de
&export_format=xlsx
&template_name=line-cft
&policy_name=LineMenuFDPProv
&schema=true

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

85

6.7. Export Example

(continued from previous page)

&schema_rules=true'
+ About to connect() to localhost port 80 (#0)
+ Trying 127.0.0.1... % Total % Received % Xferd Average Speed Time Time ␣
→˓Time Current

Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0connected
> GET /api/relation/LineRelation/55ba3e55a6165413b9d1a18d/export/

?hierarchy=55b9daeca6165413b9d166de
&export_format=xlsx
&template_name=line-cft
&policy_name=LineMenuFDPProv
&schema=true
&schema_rules=true HTTP/1.1

> Authorization: Basic YWRtaW5AcHJvdjEuY29tOnBhc3N3b3Jk
> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu)

libcurl/7.22.0
OpenSSL/1.0.1
zlib/1.2.3.4
libidn/1.23
librtmp/2.3

> Host: localhost
> Accept: */*
>
0 0 0 0 0 0 0 0 --:--:-- 0:00:02 --:--:-- 0

< HTTP/1.1 200 OK
< Server: nginx/1.1.19
< Date: Thu, 30 Jul 2015 15:45:05 GMT
< Content-Type:

application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
< Transfer-Encoding: chunked
< Connection: keep-alive
< X-CSRFToken: tey9Z6fdlDtwEMYczJ2UmSleIolfG4ys
< Content-Disposition: attachment;

filename=relation_LineRelation_exportedsheet_formatted_2015-07-30_17-45-03.xlsx
< Content-Language: en-us
< Vary: Accept, Cookie, Accept-Language, X-CSRFToken
< Allow: GET, HEAD, OPTIONS
< Set-Cookie: fileDownloadToken=downloaded; Path=/
< Set-Cookie: csrftoken=tey9Z6fdlDtwEMYczJ2UmSleIolfG4ys;

SameSite=Lax;
httponly;
Path=/

< Set-Cookie: sessionid=aioz1ykt36ht47fzthjpljektbg1z1yr;
SameSite=Lax;
httponly;
Path=/

<
{ [data not shown]
100 9906 0 9906 0 0 3744 0 --:--:-- 0:00:02 --:--:-- 3745
+ Connection #0 to host localhost left intact
+ Closing connection #0

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

86

6.8. Example Transaction

6.8. Example Transaction

• task: GET transaction instance tool/Transaction/01de8720-d627-4e53-8e1b-e1ad66edb7bd/

• user: site administrator

• hierarchy: 55b9dc81a6165413b9d16ab6

The transaction shows the workflow steps to delete the instance of the relation/LineRelation.

The example is from the JSON format of the transaction with detail: “Delete Line Relation”.

curl -v
-H 'Authorization: Basic YWRtaW5AbG9jdXMxLmNvbTpwYXNzd29yZA=='
'http://localhost/api/tool/Transaction/01de8720-d627-4e53-8e1b-e1ad66edb7bd/
?hierarchy=55b9dc81a6165413b9d16ab6
&nowait=true
&format=json'

+ About to connect() to localhost port 80 (#0)
+ Trying 127.0.0.1... connected
> GET /api/tool/Transaction/01de8720-d627-4e53-8e1b-e1ad66edb7bd/

?hierarchy=55b9dc81a6165413b9d16ab6
&nowait=true
&format=json HTTP/1.1

> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu)
libcurl/7.22.0
OpenSSL/1.0.1
zlib/1.2.3.4
libidn/1.23
librtmp/2.3

> Host: localhost
> Accept: */*
> Authorization: Basic YWRtaW5AbG9jdXMxLmNvbTpwYXNzd29yZA==
>
< HTTP/1.1 202 ACCEPTED
< Server: nginx/1.1.19
< Date: Fri, 31 Jul 2015 11:44:27 GMT
< Content-Type: application/json
< Transfer-Encoding: chunked
< Connection: keep-alive
< Vary: Accept, Cookie, Accept-Language, X-CSRFToken
< Content-Language: en-us
< Allow: GET, POST, HEAD, OPTIONS
< X-CSRFToken: pcWhI6fzSbevYskrNVcP34JDZOWH6Nti
< Set-Cookie: csrftoken=pcWhI6fzSbevYskrNVcP34JDZOWH6Nti;

SameSite=Lax;
httponly;
Path=/

< Set-Cookie: sessionid=nyoefznzm1qy9t51qq6v2x0vgkmbvbij;
SameSite=Lax;
httponly;
Path=/

<

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

87

6.8. Example Transaction

Response JSON data attribute snippet showing some workflow steps:

{

...

"data": {
"username": "admin",
"status": "Success",
"rolled_back": "No",
"resource": {
"hierarchy": "sys.prov1.cust1.locus1",
"model_type": "relation/LineRelation",
"current_state": "/api/relation/LineRelation/55ba2482a6165413b9d19fb8/ Entity",
"pkid": "55ba2482a6165413b9d19fb8"

},
"log": [
{
"severity": "info",
"format": "text",
"log_id": "55ba24bea6165413b9d19fcd",
"href": "/api/tool/Transaction/01de8720-d627-4e53-8e1b-e1ad66edb7bd/log/

?log_id=55ba24bea6165413b9d19fcd",
"time": "2015-07-30T13:21:02.637000",
"message": "Step 2 - End",
"transaction_id": "01de8720-d627-4e53-8e1b-e1ad66edb7bd"

},
{
"severity": "info",
"format": "text",
"log_id": "55ba24bea6165413b9d19fcc",
"href": "/api/tool/Transaction/01de8720-d627-4e53-8e1b-e1ad66edb7bd/log/

?log_id=55ba24bea6165413b9d19fcc",
"time": "2015-07-30T13:21:02.637000",
"message": "Step 2 - Condition unmet, skipping step. \n[\n

..(SNIPPED)
"transaction_id": "01de8720-d627-4e53-8e1b-e1ad66edb7bd"

},
{
"severity": "info",
"format": "text",
"log_id": "55ba24bea6165413b9d19fcb",
"href": "/api/tool/Transaction/01de8720-d627-4e53-8e1b-e1ad66edb7bd/log/

?log_id=55ba24bea6165413b9d19fcb",
"time": "2015-07-30T13:21:02.609000",
"message": "Step 2 - Start update data/InternalNumberInventory\nat hierarchy␣

→˓level
..(SNIPPED)

"transaction_id": "01de8720-d627-4e53-8e1b-e1ad66edb7bd"
},
{
"severity": "info",
"format": "text",

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

88

6.8. Example Transaction

(continued from previous page)

"log_id": "55ba24bea6165413b9d19fca",
"href": "/api/tool/Transaction/01de8720-d627-4e53-8e1b-e1ad66edb7bd/log/

?log_id=55ba24bea6165413b9d19fca",
"time": "2015-07-30T13:21:02.605000",
"message": "Step 1 - End",
"transaction_id": "01de8720-d627-4e53-8e1b-e1ad66edb7bd"

},
{
"severity": "info",
"format": "text",
"log_id": "55ba24bda6165413b9d19fc5",
"href": "/api/tool/Transaction/01de8720-d627-4e53-8e1b-e1ad66edb7bd/log/

?log_id=55ba24bda6165413b9d19fc5",
"time": "2015-07-30T13:21:01.280000",
"message": "Step 1 - Start remove device/cucm/Line\n
at hierarchy level sys.prov1.cust1.locus1",
"transaction_id": "01de8720-d627-4e53-8e1b-e1ad66edb7bd"

},

...

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

89

7. Backward Compatibility

7.1. API Backward Compatibility and Import

The VOSS Automate system maintains a Data Model version data store containing all versions that have
been imported onto the system.

While there is always a current version of a Data Model in use on the system, a check is carried out during
the import of data:

• If the current version is newer than the definition of the imported data, then the imported definition data
is flagged internally as automigration: false to prevent resources from auto-migrating from a newer
version to an older version.

• Importing an older version will not replace the latest definition as the default schema. The older version
will only be added to the version store.

The snippet example below shows the automigration attribute:

{ "meta": {},
"resources": [
{ "data": {
"name": "test_mig_dm"
...
},
"meta": {
"hierarchy": "sys",
"model_type": "data/DataModel",
"schema_version": "0.1",
"version_tag": "0.3",
"automigration": false

}
}

]
}

This model definition version store makes it possible for version definition imports to be sequence independent,
allowing a freshly installed system to construct the version history for backwards compatibility.

90

8. General API Reference

8.1. Using the API Reference

For each resource, a study of the general Reference for Actions in conjunction with the lists of actions for a
resource provides the reference for the resource.

The Field Reference for a resource provides payload details. The list below explains the Field Reference for
a resource:

• The field Title is indicated in bold. An asterisk indicates the field is mandatory.

• If the field Type is an array, its the Field Name has a [n] suffix.

• Object and array names are listed to provide the context of fields.

• If a field belongs to an object or an array, the full name is in dot separated notation.

• Where cardinality is shown, the range is [MinItems..MaxItems].

• If a field has a Default value, the value is shown.

• If a field has a Pattern, the regular expression pattern is shown.

In addition, a number of conventions are followed some general guidelines should be noted.

• The full URL includes the host name: https://[hostname]; for example, https://172.29.232.62

• Variables are enclosed in square brackets.

• [hierarchy] is the hierarchy which can be specified as:

– UUID (Universally Unique Identifier); for example, 1c012432c0deab00da595101 or

– In dot notation; for example, ProviderName.CustomerName.LocationName

For a list of available hierarchy UUIDs and their dot notations, refer to the data in the response of the
call:

GET /api/data/HierarchyNode/?format=json

• [pkid] is the ID of the resource instance. Refer to the List action reference for the resource.

• [filename] refers to a file.

• where a custom action (with “+” in the URL) is available, the POST method is used to execute the
Provisioning workflow with the name following the “+”. For more information, consult the custom
workflow section of the API Guide.

91

8.1. Using the API Reference

Relations, Domain models, and Views may have parameters where the choices are constructed from
unexposed models (and that may not be available in the API Reference). You can obtain these choices by
using the URL specified in the target attribute of the schema of parameter.

To illustrate, below is an extract of the schema for a model called relation/SystemUser that contains a
parameter SSOUser, which links a user in the system to a user in an SSO identity provider server. This is
done by mapping the SSO user name (sso_username) of the user in the SSO server (sso_idp) to a user in
VOSS Automate (data/User).

The schema of relation/SystemUser shows that the choices that are available from SSO Identity provider
servers are stored in the model data/SsoIdentityProvider. The list of SSO identity providers could be obtained
by using the URL in the target attribute of the schema.

GET /api/relation/SystemUser/?hierarchy=[hierarchy]
&format=json
&schema=1

The following is an extract of the schema of relation/SystemUser:

...

"SSOUser": {
"items": {

"type": "object",
"properties": {

"sso_username": {
"required": true,
"type": "string",
"description": "The name identifier that is used for
an SSO authenticated user.",

"title": "SSO Username"
},
"sso_idp": {

"target": "/api/data/SsoIdentityProvider/choices/
?hierarchy=[hierarchy]
&field=entity_id
&format=json
&auth_token=[auth_token]",

"format": "uri",
"required": true,
"choices": [],
"target_attr": "entity_id",
"target_model_type": "data/SsoIdentityProvider",
"title": "SSO Identity Provider",
"type": "string",
"description": "The entity id of the SSO Identity
Provider."

},

...

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

92

8.2. API Schema

8.2. API Schema

The schema for a resource is obtained in the request parameter:

?format=json&schema=1

This way of requesting the schema is only available when requesting an Add form or when viewing a resource.

A specific url is also available for obtaining the schema of a resource:

GET /api/{model_type}/{model_name}/schema/?format=json&hierarchy=pkid

All the schemas are in JSON format.

To see a specific resource API schema, refer to the API Reference page for the resource in the API Reference
material on the documentation portal.

8.3. Notifications

VOSS Automate APIs support sending out notifications when instances of certain models are added or
changed. For more details on which models are supported for notifications, and how to configure these
notifications please refer to the topics on:

• Alerts in the VOSS Automate Core Feature Guide

• SNMP Traps in the Platform Guide

8.4. Meta data

8.4.1. Metadata

The metadata of a resource provides :

• tags: List of instance tag names - for tag management, see API Parameters.

• version_tag: List of version tags - for version tag management, see API Parameters.

• model_type: The complete model type with name.

• references: Information of how this resource relates to other resources

• summary_attrs: Summary attributes used for list views.

• actions: The actions that can be performed in this resource

• path: The hierarchy (business node) path to the existing resource

• singleton: If set, instances of the resource can be restricted to one per system or hierarchy.

These are discussed in more detail elsewhere in this guide.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

93

8.4. Meta data

8.4.2. References

References in the system represent the reference of an entity in the system as Hypermedia as the Engine of
Application State (HATEOS). Each reference position is represented by an object pair pkid and href.

• device: A list of one device that relates the resource to a device resource in the system.

• owner: The owner reference would exist if the current resource was created by a Domain Model
(feature model)

• self: A list of containing a reference to the current resource.

• parent (reserved for hierarchy): An entry containing the parent in the hierarchy: zero for root node,
one for other resources.

• children (reserved for hierarchy): A list of zero or more children in the hierarchy tree below the
resource.

For example:

"references": {
"device": [{

"pkid": "",
"href": ""

}],
"owner": [{

"pkid": "",
"href": ""

}],
"self": [{

"pkid": "5135fc0f31790a3000a83b2b",
"href": "/api/data/CallManager/5135fc0f31790a3000a83b2b"

}],
"children": [],
"parent": [{

"pkid": "5135fb8331790a2ffee7d7ab",
"href": "/api/data/HierarchyNode/5135fb8331790a2ffee7d7ab"

}]
}

8.4.3. Summary Attributes

For resources that will be displayed on the GUI as a summarized list, data fields can be selected for this list.
Members of the summary_attr list identify:

• title as the list column header on the GUI display

Note: If the default Field Display Policy for the resource contains a value, this will be displayed in the
column header.

• name as the resource field to show in the column of the list

For example:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

94

http://en.wikipedia.org/wiki/HATEOAS
http://en.wikipedia.org/wiki/HATEOAS

8.4. Meta data

summary_attrs: [
{
title: "Name"
name: "name"
}
{
title: "Description"
name: "description"
}

]

8.4.4. Path

The path object in the meta of a specific resource contains the list of parent pkid values in the hierarchy
sequence to which the resource belongs. This list represents the navigation path from the root node of the
hierarchy to the specific resource.

Example

path: [
"50c1e21fa61654441dd8edc4",
"50c1e2a2a61654441eaebcf8",
"50c1e2a4a61654441eaebcfe",
"50c1e2a6a61654441eaebd01"
]

In the example above, the path to the current resource node is:

"50c1e21fa61654441dd8edc4" (ancestor)

--> "50c1e2a2a61654441eaebcf8" (ancestor)

--> "50c1e2a4a61654441eaebcfe" (parent)

--> "50c1e2a6a61654441eaebd01" (current node)

8.4.5. Model Type

Model type is referenced from model_type in the schema. The reference is to the type of model and the
model name - see: model_type .

Example

"data/CallManager" in

{"meta":
{"model_type": "data/CallManager",
...
},

}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

95

8.4. Meta data

8.4.6. Actions

The actions in the metadata of a resource schema provide HTTP method calls to a resource for a number of
purposes. The available actions in the schema depend on whether the call request is:

• to a specific resource, i.e. pkid is specified in the call, or

• to the resource in general, i.e. no pkid in the call

• the actions contain a schema property to indicate which requests will support asynchronous transaction
handling. This behavior is controlled by the nowait parameter in the URL.

8.4.7. Singleton

The Data model type resource called data/Datamodel has an attribute singleton that can take any of 3
values:

• None (default): no singleton constraint

• system: a system singleton that only allows one instance throughout the system

• hierarchy: a hierarchy singleton that only allows one instance every hierarchy

For example, the snippet below shows a simple data/Datamodel instance called LoginBanner that can itself
only have one instance per hierarchy:

"data": {
"doc": "doc",
"Meta": {

"operations": [
"add",
"clone",
"export",
"export_bulkload_template",
"get",
"help",
"move",
"list",
"migration",
"transform",
"remove",
"tag",
"tag_version",
"update",
"field_display_policy"

],
"summary_attrs": [

"login_banner"
],
"singleton": "hierarchy",
"attr_props": [

{
"title": "Login Banner",
"required": true,

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

96

8.5. Generic Actions

(continued from previous page)

"type": "string",
"displayable": true,
"name": "login_banner"

}
]

},
"name": "LoginBanner"

}

8.5. Generic Actions

8.5.1. Choices Generic Action

Format:

GET http://<server_address>/api/<resource_type>/<resource_name>/choices/
?hierarchy=[hierarchy]
&format=json

Action choices

Description Get a list of resource instances at a hierarchy as value-title pairs.
Requires a business key in the resource model definition.

Method GET

URL /api/<resource_type>/<resource_name>/choices/ or without resource
specification: /api/choices/

Parameters hierarchy=[hierarchy], format=json, pagination parameters (see API
Parameters), filter parameters (see Filter Parameters for Choices).

Response A JSON payload with:
• pagination details
• meta information: query, list of instance references with pkid

and href of data
• choices data: list of value-title pairs of the business keys. On

the GUI choices list, the response title displays, while the value
is returned. Filter parameters can modify this standard behavior
- see Filter Parameters for Choices.

support_async false

Example:

• Request

GET http://<server_address>/api/data/Countries/choices/
?hierarchy=[hierarchy]
&format=json

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

97

8.5. Generic Actions

• Response

HTTP 200 OK
Vary: Accept
X-Request-ID: 9bcd77b4cd27dccd0f18a1d8d22e7ddab85aa848
Content-Type: text/html; charset=utf-8
Allow: GET, HEAD, OPTIONS
Response-Content:
{

pagination : {
direction : asc,
maximum_limit : 2000,
skip : 0,
limit : 0,
total_limit : null,
total : 37

},
meta : {

query : /api/data/Countries/choices/,
references : [

{
pkid : 5a16c3c68963f91b84baf357,
href : /api/data/Countries/5a16c3c68963f91b84baf357/

},
...

]
},
choices : [

{
value : ["Australia", "AUS", "hcs"],
title : ["Australia", "AUS", "hcs"]

},
...

8.5.2. Add Generic Action

Action add

title Get the GUI Add form.

method GET

URL /api/<resource_type>/<resource_name>/add/

Parameters hierarchy=[hierarchy], format=json

Response The schema of <resource_type>/<resource_name> as JSON

support_async false

class add

When adding the &schema=1 parameter, the response contains the schema of the payload for the Create
action.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

98

8.5. Generic Actions

The schema required to add the resource may be different from the schema that is used to obtain the details
of the resource. Refer to the schema of the GUI Add form.

The actions in the response shows the URL for the POST API call to create an instance (see Create action).

For example, the request below shows the required details. (Using variables [hierarchy])

Request:

GET /api/data/AccessProfile/add/
?hierarchy=[hierarchy]
&format=json
&schema=1

Response snippet - POST call:

"create": {
"class": "add",
"href": "/api/data/HierarchyNode/?hierarchy=[hierarchy]",
"method": "POST",
"support_async": true,
"title": "Create"

}

Response snippet - schema:

"schema": {
"$schema": "http://json-schema.org/draft-03/schema",
"properties": {

"description": {
"description": "A general description for the hierarchy node.",
"title": "Description",
"type": "string"

},
"name": {

"description": "The name by which this hierarchy node will
be known.",

"pattern": "^[A-Za-z0-9_\\-]+$",
"required": true,
"title": "Name",
"type": "string"

},
"node_type": {

"choices": [],
"description": "A type label for this node which refers
to a Hierarchy Node Type.",

"format": "uri",
"is_password": false,
"items": {

"is_password": false
},
"readonly": false,
"required": false,
"target": "/api/data/HierarchyNodeType/choices/?hierarchy=[hierarchy]",

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

99

8.5. Generic Actions

(continued from previous page)

"target_attr": "name",
"target_model_type": "data/HierarchyNodeType",
"title": "Hierarchy node type",
"type": "string"

}
},
"schema_version": "0.1",
"type": "object"

},

8.5.3. Bulk Update Generic Action

Action bulk_update (1)

title First task: Obtain the URL and schema needed to construct the
payload to modify the resource.

method GET

URL /api/<resource_type>/<resource_name>/bulk_update/

Parameters hierarchy=[hierarchy], format=json

Response Returns: POST call that is used to update the instances of resource
schema that is used to create POST payload.

support_async false

class update

Action bulk_update (2)

title Second task: Perform the bulk modify on the required list of instances
each with [pkid] with the payload constructed from the schema in the
first task.

method POST

URL /api/<resource_type>/<resource_name>/bulk_update/

Parameters hierarchy=[hierarchy], format=json

Payload Contains update data and instance pkids to update.

Use the GET request to obtain a list of instance pkids to select for the bulk update:

GET /api/<resource_type>/<resource_name>/?hierarchy=[hierarchy]&format=json

As an example, the request below shows the required details for a particular model. (Using variables
[hierarchy], [pkid1], [pkid2])

Request for POST call and schema:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

100

8.5. Generic Actions

GET /api/data/AccessProfile/bulk_update/
?hierarchy=[hierarchy]
&schema_rules=true
&format=json
&schema=1

Response snippet - POST call:

"bulk_update": {
"class": "update",
"href": "/api/data/AccessProfile/bulk_update/?hierarchy=[hierarchy]",
"method": "POST",
"support_async": true,
"title": "Bulk Modify"

}

Response snippet - schema:

"schema": {
"$schema": "http://json-schema.org/draft-03/schema",
"properties": {
"description": {
"description": "A description for the Access Profile.",
"required": false,
"title": "Description",
"type": "string"

},
"full_access": {
"description": "Enabling this flag, grants the user full
system access.",

"required": false,
"title": "Full Access",
"type": "boolean"

},
"miscellaneous_permissions": {
"description": "The list of miscellaneous operations permitted by
this Access Profile.",

"items": {
"choices": [
{
"title": "",
"value": ""

}
],
"type": "string"

},
"required": false,
"title": "Miscellaneous Permissions",
"type": "array"

},
"name": {
"description": "The name that is given to the Access Profile.",

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

101

8.5. Generic Actions

(continued from previous page)

"required": false,
"title": "Name *",
"type": "string"

},
"type_specific_permissions": {
"description": "The list of types that are permitted by
this Access Profile.",

"items": {
"properties": {
"operations": {
"description": "The operations that are permitted by this Access
Profile for the given type.",

"items": {
"choices": [
{
"title": "",
"value": ""

}
],
"type": "string"

},
"required": false,
"title": "Permitted Operations *",
"type": "array"

},
"type": {
"choices": [],
"description": "The type that is permitted by this Access Profile.
This field supports the use of the * wildcard.",

"format": "uri",
"required": false,
"target": "/api/choices/?hierarchy=[hierarchy]&format=json",
"target_model_type": "",
"title": "Permitted Type *",
"type": "string"

}
},
"type": "object"

},
"required": false,
"title": "Type Specific Permissions",
"type": "array"

}
},
"schema_version": "0.1.8",
"type": "object"
},

Example POST request to carry out the update:

POST /api/data/AccessProfile/bulk_update/

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

102

8.5. Generic Actions

(continued from previous page)

?hierarchy=[hierarchy]
&nowait=true
&format=json

Payload example - bulk updating the description of instances having pkid1, pkid2 with the string “profile”:

{"data":{"description":"profile"},
"meta":{
"references":{
"form_href":"/api/data/AccessProfile/bulk_update/
?hierarchy=[hierarchy]
&schema=
&schema_rules=true"

}
},
"request_meta":{
"hrefs":[
"/api/data/AccessProfile/[pkid1]",
"/api/data/AccessProfile/[pkid2]"

]
}
}

8.5.4. Clone Generic Action

Action clone

Title Clone instance with [pkid]. The schema rules are applied.

Method GET

URL /api/<resource_type>/<resource_name>/[pkid]/clone/

Parameters hierarchy=[hierarchy], schema=true, schema_rules=true

Response A JSON payload with: A POST action URL. The unchanged model
[pkid] payload to be modified to create a new instance.

support_async false

Class clone

• For the instance pkids that can cloned, refer to the List GET call for the resource:

GET http://<server_address>/api/<resource_type>/<resource_name>/
?hierarchy=[hierarchy]
&format=json

• Use the POST action in the response and a modification of the response as the payload to create the
clone of the the instance with pkid.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

103

8.5. Generic Actions

8.5.5. Configuration Template Generic Action

Action configuration_template

title Obtain the schema and URL needed to create a Configuration Tem-
plate instance for the resource.

method GET

URL /api/<resource_type>/<resource_name>/configuration_template/

Parameters hierarchy=[hierarchy]

Response POST call to create the schema for the configuration template of
specified resource.

support_async false

class config

• Use the returned properties to create the POST payload data for the specified resource.

• For a details on what to add to the POST payload, see the schema in the response.

• The POST call is of the format:

POST http://<server_address>/api/data/ConfigurationTemplate/
?hierarchy=sys

For example, the request:

GET /api/data/AccessProfile/configuration_template/
?hierarchy=[hierarchy]
&format=json
&schema=true
&schema_rules=true

The response includes the required POST call:

"create": {
"class": "add",
"href": "/api/data/ConfigurationTemplate/?hierarchy=[hierarchy]",
"method": "POST",
"support_async": true,
"title": "Create"

}

The response includes the Configuration Template schema for the relevant model. The template property of
the schema applies to the relevant model. This schema is used to create a payload for the POST.

A simple example of a payload containing a Configuration Template for a model data/AccessProfile with
name “CFT1” that adds a value to the Access Profile description “Access Profile for:”:

{"data":
{"name":"CFT1",
"target_model_type":"data/AccessProfile",
"merge_strategy":"additive",

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

104

8.5. Generic Actions

(continued from previous page)

"template":{
"description":"Access Profile for:"}

},
"request_meta":{},
"meta":{

"references":{
"form_href":"/api/data/AccessProfile/configuration_template/
?hierarchy=[hierarchy]"

}
}
}

8.5.6. Create Generic Action

Action create

title Create an instance of a resource.

method POST

URL /api/<resource_type>/<resource_name>/

Parameters hierarchy=[hierarchy]

Payload See add schema of the object for the payload specification

support_async true

class add

Response is a pkid of the created instance.

To obtain the schema of the resource, use the GET request:

GET /api/<resource_type>/<resource_name>/
?hierarchy=[hierarchy]
&format=json

To apply a configuration template when creating the resource, use the parameter &configuration_template
with its value the name of an existing Configuration Template. For details on the parameter, refer to the topic
on API parameters.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

105

8.5. Generic Actions

8.5.7. Delete Generic Action

Action Delete

title Delete instance with [pkid]

method DELETE

URL /api/<resource_type>/<resource_name>/[pkid]/

Parameters hierarchy=[hierarchy]

Payload N/A

support_async true

Class delete

Action Bulk Delete

Title Bulk delete [pkid1],[pkid2]. . .

Method DELETE

URL /api/<resource_type>/<resource_name>/

Parameters hierarchy=[hierarchy]

Payload {“hrefs”:[“/api/<resource_type>/<resource_name>/[pkid1]”,
“/api/<resource_type>/<resource_name>/[pkid2]”, . . .]}

support_async true

Class delete

For the instance pkids [pkid1],[pkid2], . . . that can be added to the DELETE call payload (the instance pkids
to delete), use to the GET call for the resource.

GET /api/<resource_type>/<resource_name>/
?hierarchy=sys
&format=json

8.5.8. Execute Generic Action

Action Execute (instance)

Title Execute

Method POST

URL /api/<resource_type>/<resource_name>/execute/

Parameters hierarchy=[hierarchy]

Support Async true

Class execute

For example, execute a data synchronization action for a device. In this case, the call would be:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

106

8.5. Generic Actions

POST /api/data/DataSync/[pkid]/execute/
?hierarchy=[hierarchy]
&nowait=true
&format=json

And for a device data/CallManager, the payload would be similar to:

{
"data": {

"asynchronous": false,
"device_type": "data/CallManager",
"model_type_list": "minimum CUCM models",
"name": "minimum CUCM models",
"refresh_existing_data": true,
"sync_type": "pull"

},
"meta": {

"references": {
"form_href": "/api/data/DataSync/[pkid]/
?hierarchy=[hierarchy]"

}
},
"request_meta": {}

}

8.5.9. Export Generic Action

Action export (instance)

Task Get a selected [export_format] of the schema and a single instance
with [pkid] of <resource_type>/<resource_name>; optionally with
tag_version at [version] and Configuration Template as [configtem-
plate].

Call GET

URL /api/<resource_type>/<resource_name>/export/[pkid]/

Parameters hierarchy=[hierarchy], version=[version], ex-
port_format=[raw_xlsx|xlsx|json], schema=, schema_rules=,
template_name=[configtemplate]

Response The response is an attachment: a compressed zip of the JSON file

support_async false

Class export

For export_format=raw_xlsx, the response is a “raw” MS Excel spreadsheet with columns corresponding
to the JSON format export and response format:

Content-Disposition: attachment;
filename=<resource_type>_<resource_name>_exportedsheet_CCYY-MM-DD_HH-MM-SS.xlsx

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

107

8.5. Generic Actions

(continued from previous page)

Content-Language:en
Content-Type:
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

For export_format=xlsx, the response is a MS Excel spreadsheet, formatted to show all columns and
response format:

Content-Disposition: attachment;
filename=<resource_type>_<resource_name>_exportedsheet_formatted_CCYY-MM-DD_HH-MM-SS.

→˓xlsx
Content-Language:en
Content-Type:
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

For export_format=json, the response is a time stamped zip file of data in JSON and a response format:

Content-Disposition: attachment;
filename=export_CCYY-MM-DD_HH:MM:SS.MS.json.zip

Content-Language:en
Content-Type:application/x-zip

The XLSX format can be used to bulk load instances of the resource and the JSON format can be used to
import instances of the resource.

Action Bulk Export

Title Get a selected [export_format] the schema and instances [pkid1],
[pkid2],. . . of the resource; optionally with tag_version at [version]
and Configuration Template as [configtemplate].

Method POST

URL /api/<resource_type>/<resource_name>/export/

Parameters hierarchy=[hierarchy], version=[version], ex-
port_format=[raw_xlsx|xlsx|json], schema=, schema_rules=,
template_name=[configtemplate]

Payload {“hrefs”: [“/api/<resource_type>/<resource_name>/[pkid1]”,
“/api/<resource_type>/<resource_name>/[pkid2]”, . . .]}

support_async true

Class export

For export_format=raw_xlsx, the response is a MS Excel spreadsheet and response format:

Content-Disposition: attachment;
filename=<resource_type>_<resource_name>_exportedsheet_CCYY-MM-DD_HH-MM-SS.xlsx

Content-Language:en
Content-Type:
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

For export_format=xlsx, the response is a MS Excel spreadsheet and response format:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

108

8.5. Generic Actions

Content-Disposition: attachment;
filename=<resource_type>_<resource_name>_exportedsheet_formatted_CCYY-MM-DD_HH-MM-SS.

→˓xlsx
Content-Language:en
Content-Type:
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

For export_format=json, the response is a time stamped export zip file and a response format:

Content-Disposition: attachment;
filename=export_CCYY-MM-DD_HH:MM:SS.MS.json.zip

Content-Language:en
Content-Type:application/x-zip

The XLSX format can be used to bulk load instances of the resource and the JSON format can be used to
import instances of the resource.

To get the list of all instance pkids [pkid1],[pkid2], . . . , use the List action of the resource:

GET http://<server_address>/api/<resource_type>/<resource_name>/
?hierarchy=sys

8.5.10. Export BulkLoad Template Generic Action

Action export_bulkload_template

Title Get a compressed file of the Bulk Load spread sheet template for
the resource, optionally with a Field Display Policy as [policy] or
Configuration Template as [configtemplate].

Method POST

URL /api/<resource_type>/<resource_name>/export_bulkload_template/

Parameters hierarchy=[hierarchy], policy_name=[field_display_policy], tem-
plate_name=[configtemplate], schema=, schema_rules=

Response The response is an attachment of the format: <re-
source_type>_<resource_name>_bulkloadsheet.xlsx

support_async true

Class export

Example request:

POST /api/data/DATA1/export_bulkload_template/
?hierarchy=[hierarchy]
&template_name=[configtemplate]
&policy_name=[field_display_policy]
&schema=
&schema_rules=
&format=json

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

109

8.5. Generic Actions

Example response:

HTTP/1.1 200 OK
Server: nginx/1.1.19
Date: Mon, 09 Mar 2015 15:13:06 GMT
Content-Type: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
Transfer-Encoding: chunked
Connection: keep-alive
Vary: Accept, Cookie, Accept-Language
Content-Language: en-us
Allow: POST, OPTIONS
Content-Disposition: attachment; filename=data_DATA1_bulkloadsheet.xlsx

The returned spreadsheet will reflect the applied Configuration Template and Field Display Policy as indicated
in the POST parameters.

8.5.11. Field Display Policy Generic Action

Action field_display_policy

title Obtain the schema and URL needed to create a Field Display Policy
instance for the resource.

method GET

URL /api/<resource_type>/<resource_name>/field_display_policy/

Parameters hierarchy=[hierarchy]

Response Field Display Policy schema and rules that include the POST and a
reference to the target model used to create the field display policy
for the resource.

support_async false

class display_policy

• Use the action in the response to create the POST payload for the specified resource.

The response snippet below shows the POST method to create the Field Display Policy:

"meta": {
"actions": [

{
"create": {
"class": "add",
"href": "/api/data/FieldDisplayPolicy/
?hierarchy=[hierarchy]
&policy_name=[field_display_policy]",

"method": "POST",
"support_async": true,
"title": "Create"
}

...

• The Field Display Policy schema in the response shows properties to add to the POST payload.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

110

8.5. Generic Actions

Example POST payload for target model data/DATA1 (from an Admin Portal form with [form_FDP] and
[form_CFG] applicable):

{
"data": {
"field_overrides": [
{
"field": "name",
"help_text": "Help Name"

}
],
"groups": [
{
"fields": [
"name",
"surname"
],
"title": "G1"

}
],
"name": "FDP2",
"target_model_type": "data/DATA1"

},
"meta": {
"references": {
"form_href": "/api/data/DATA1/field_display_policy/
?hierarchy=[hierarchy]
&policy_name=[form_FDP]
&template_name=[form_CFG]"

}
},
"request_meta": {}

}

8.5.12. Help Generic Action

Action help

Title Get the on-line Help for the resource.

Method GET

URL /api/<resource_type>/<resource_name>/help

Parameters hierarchy=[hierarchy]

Response On-line help of the resource as HTML

support_async false

class help

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

111

8.6. Custom Device Connection Actions

8.5.13. List Generic Action

Action list

title List the resources of a given type in the system.

method GET

URL /api/<resource_type>/<resource_name>/

Parameters hierarchy=[hierarchy], format=json. The schema is returned irrespec-
tive of whether the parameter &schema=true is sent.

Response method The <resource_type>/<resource_name> schema and all instances in
JSON format.

support_async false

class list

8.5.14. Update Generic Action

Action update (instance) (same for modify)

title Modify an instance of a resource

method PUT

URL /api/<resource_type>/<resource_name>/[pkid]

Parameters hierarchy=[hierarchy]

Payload See the schema of the resource for the payload specification

support_async true

class update

The update action replaces current resource values with the payload values. The payload should contain the
all the attributes in schema.

The response is a pkid of the updated instance.

To apply a configuration template when creating the resource, use the parameter &configuration_template
(for further information on the API parameter, see the API Guide).

8.6. Custom Device Connection Actions

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

112

8.7. Custom Device Actions

8.6.1. Import

Action import (instance)

Title Execute

Method POST

URL /api/<resource_type>/<resource_name>/import/

Parameters hierarchy=[hierarchy]

Support Async

Class import

For example, a full synchronization of the VOSS Automate cache with a device.

8.6.2. Test Connect

Action test_connect (instance)

Title Test Connection

Method POST

URL /api/<resource_type>/<resource_name>/[pkid]/test_connect/

Parameters hierarchy=[hierarchy], format=json

Support Async true

Class test_connection

8.7. Custom Device Actions

8.7.1. Apply

Action apply

Title Apply

Method POST

URL /api/<resource_type>/<resource_name>/[pkid]/+apply/

Parameters hierarchy=[hierarchy], format=json

View /api/<resource_type>/<resource_name>/[pkid]/+apply/schema/

Support Async true

Class custom

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

113

8.7. Custom Device Actions

8.7.2. Assign

Action assign

Title Assign

Method POST

URL /api/<resource_type>/<resource_name>/[pkid]/+assign/

Parameters hierarchy=[hierarchy], format=json

View /api/<resource_type>/<resource_name>/+assign/schema/

Support Async true

Class custom

For example, device/cucm/PresenceUser

8.7.3. Do

Action do

Title .

Method POST

URL /api/<resource_type>/<resource_name>/[pkid]/+do/

Parameters hierarchy=[hierarchy], format=json

View /api/<resource_type>/<resource_name>/+do/schema/

Support Async true

Class custom

Example resources:

• cucm/AuthenticateUser

• cucm/DeviceLogin

• cucm/DeviceLogout

• etc. . .

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

114

8.7. Custom Device Actions

8.7.4. Lock

Action lock

Title Lock

Method POST

URL /api/<resource_type>/<resource_name>/[pkid]/+lock/

Parameters hierarchy=[hierarchy], format=json

View /api/<resource_type>/<resource_name>/+lock/schema/

Support Async true

Class custom

For example, a cucm phone.

8.7.5. Promote

Action promote

Title Promote

Method POST

URL /api/<resource_type>/<resource_name>/[pkid]/+promote/

Parameters hierarchy=[hierarchy], format=json

View /api/<resource_type>/<resource_name>/+promote/schema/

Support Async true

Class custom

8.7.6. Reset

Action reset

Title Reset

Method POST

URL /api/<resource_type>/<resource_name>/[pkid]/+reset/

Parameters hierarchy=[hierarchy], format=json

View /api/<resource_type>/<resource_name>/+reset/schema/

Support Async true

Class custom

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

115

8.7. Custom Device Actions

8.7.7. Vendor Config

Action vendor_config

Title Vendor Config

Method POST

URL /api/<resource_type>/<resource_name>/[pkid]/+vendor_config/

Parameters hierarchy=[hierarchy], format=json

View /api/<resource_type>/<resource_name>/+vendor_config/schema/

Support Async true

Class vendor_config

8.7.8. Wipe

Action wipe

Title Wipe

Method POST

URL /api/<resource_type>/<resource_name>/[pkid]/+wipe/

Parameters hierarchy=[hierarchy], format=json

View /api/<resource_type>/<resource_name>/+wipe/schema/

Support Async true

Class custom

8.7.9. Update LDAP Authentication

Action update_ldap_auth

Title Set up device/cucm/LdapAuthentication before import. Also use this
call for update.

Method POST

URL /api/device/cucm/LdapAuthentication/+update_ldap_auth/

Parameters hierarchy=[hierarchy], format=json

Support Async true

Class custom

For payload, see device/cucm/LdapAuthentication schema.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

116

8.8. Other elements

8.7.10. Update LDAP System

Action update_ldap_system

Title Set up device/cucm/LdapSystem before import. Also use this call for
update.

Method POST

URL /api/device/cucm/LdapSystem/+update_ldap_system/

Parameters hierarchy=[hierarchy], format=json

Support Async true

Class custom

For payload, see device/cucm/LdapSystem schema.

8.8. Other elements

8.8.1. Data

The data of a resource is an object containing all the required and set fields of a model.

The data instance shows names as they are defined in the schema of the resource while the values of the
names are contained in the instance.

Example of a single data instance of a resource of model type data and model name CallManager.

data: {
iso_country_code: "AUS"
pkid: "51ef319c746fae3622c710e4"
pstn_access_prefix: "9"
service_access_prefix: "13"
default_user_locale: "English United States"
network_locale: "United States"
premium_access_prefix: "8"
international_access_prefix: "011"
country_name: "Australia"
international_dial_code: "61"
emergency_access_prefix: "000"
national_trunk_prefix: "0"
hierarchy_path: "sys"

}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

117

8.8. Other elements

8.8.2. Resources

The resources object in a resource list is represented as a list of objects containing meta and data of
resources of the requested model type and model name.

Below and example of a resources object outline.

"resources": [{
"meta": { ... },
"data": { ... }

},
{

"meta": { ... },
"data": { ... }

},
...
]

8.8.3. Schema

You can obtain the schema for a resource in the request parameter: ?format=json&schema=true. This way
of requesting the schema is only available when requesting an Add form or when viewing a resource.

A specific URI is also available for obtaining the schema of a resource:

GET /api/(str:model_type)/(str:model_name)/schema/?format=json&hierarchy=pkid

The JSON schema uses the IETF draft-zyp-json-schema-03 (http://tools.ietf.org/html/
draft-zyp-json-schema-03 and https://github.com/json-schema/json-schema)

The schema provides the properties of a field for each object in the schema describing the data of a resource:

• $schema: The schema URI, currently http://json-schema.org/draft-03/schema.

• title: This is the default field name.

• required: The property and value true value is a property if the field is mandatory

• type: The data type of the field. See the definitions and conventions in use. If the data type is:

– object, then the object itself has a schema

– array, then it has the property items

• format: if the type is string, a further format of the string can be selected.

• choices: In the case that the data element takes a value from a specified list of values.

• target: where a resource is linked to another resource, this resource is indicated as the target.

• target_attr: the specific attribute of the target.

• attr_props: an object containing the list of properties of each attribute.

• minItems: minimum number if the data type is an array.

• maxItems: maximum number if the data type is an array.

• items: the specified items if the data type is an array.

• documentation and description: text content to document and describe the object.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

118

http://tools.ietf.org/html/draft-zyp-json-schema-03
http://tools.ietf.org/html/draft-zyp-json-schema-03
https://github.com/json-schema/json-schema
http://json-schema.org/draft-03/schema

8.8. Other elements

• name: name of the resource. [a-zA-Z_] characters are allowed

• default: default value, if specified.

• valid_re: the regular expression that a string data type should adhere to.

Example

Refer to the example data as in Data. The schema for the example data provides properties of each element:

schema: {
$schema: "http://json-schema.org/draft-03/schema"
type: "object"
properties: {
host: {

required: true
type: "string"
title: "Host Name"

}
username: {

required: true
type: "string"
title: "Admin Username"

}
password: {

required: true
type: "string"
title: "Admin Password"

}
version: {

target: "/api/data/CallManagerVersion/choices/
?hierarchy={hierarchy}&field=version&format=json"

format: "uri"
title: "Version"
choices: []
target_attr: "version"
type: "string"

}
port: {

type: "string"
title: "Port"

}
import: {

type: "boolean"
title: "Immediate Import"

}
data_sync: {

target: "/api/data/DataSync/choices/
?hierarchy={hierarchy}&field=name&format=json"

title: "Data Sync"
format: "uri"
choices: []
target_attr: "name"
type: "string"

}

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

119

8.8. Other elements

(continued from previous page)

}
}

8.8.4. Pagination

This object contains the pagination information of a resource list.

Three fields always exist in this object:

• skip: The offset index into the total resource list to be skipped

• limit: The number of resource to be returned

• total: The total number of resources that exist on the system/hierarchy. If a GET call was made with
the parameter count=false, then this value will be 0.

Example of a pagination object within a list response.

"pagination": {
"skip": 0,
"total": 25,
"limit": 250

}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

120

9. OpenAPI Examples

Refer to the "OpenAPI Specification Examples" section in the HTML API Guide

9.1. Getting Started

9.1.1. Introduction to Automate OpenAPI Examples

Overview

This section of the API Guide describes a number of use-cases for integrating with VOSS Automate, based
on the OpenAPI specification.

Note: The OpenAPI specification (formerly called Swagger) defines a standard, language-agnostic interface
to RESTful APIs. OpenAPI definition files are written in the YAML format, which is automatically rendered
into a more human-readable interface.

See https://swagger.io/specification/

You can use the REST API to interact programmatically with Automate and integrate with external applications,
such as ServiceNow. For example, you can use the example calls to retrieve a list of all customers at the
Provider hierarchy, retrieve a list of all sites belonging to a customer, add a phone or a subscriber, update
phone or line details, or delete a phone or a subscriber.

Note: The OpenAPI examples do not support interactive API calls to VOSS Automate.

Errors

The API uses standard HTTP status codes to indicate the success or failure of the API call.

The Automate API uses conventional HTTP response codes to indicate the success or failure of an API
request. Codes in the 2xx range indicate success. Codes in the 4xx range indicate an error that failed given
the information provided, for example, a required parameter was omitted.

121

https://swagger.io/specification/

9.1. Getting Started

Samples

Each API call has one or more documented examples, for either a response or request (depending on the
method, either GET, POST, PATCH, or DELETE).

The body of the response is JSON format.

The response samples provided for the GET call depend on the macro you provide for the call, a sample
response is provided for each input macro parameter. Click the drop-down at Example to view the response
sample for the relevant input macro.

Request samples are similarly provided for each POST, PATCH, and DEL call. Where more than one example
is provided, click the drop-down at Example to toggle the examples for the call.

You can view the samples, here:

• Refer to the "OpenAPI Specification Examples" section in the HTML API Guide.

Content Type

The VOSS Automate API supports the application/json content type by default.

VOSS Automate API and the OpenAPI Specification Examples

These links provide further details relevant to the OpenAPI examples:

• Automate API Guide (this document)

The Automate API Guide provides general information for the Automate API, which you can use as
references for the examples in this section:

– What are models?

– What are model types?

– What is the importance of “hierarchy” in the API?

– Request and response patterns

– API URL structure

– Headers

– Authentication

– Authorization

– HTTP methods

– API parameters

– Request headers

– Login and authorization tokens

– API responses

– Optional request metadata

– Using the API Reference

– API schema

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

122

https://documentation.voss-solutions.com/release_21.4/html/src/api/index.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-API-system-concepts.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-API-response-elements-metadata-model_type.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-API-hierarchy.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-API-req-resp-patterns.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-endpoint-versioning.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-HTTP-header-format.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-HTTP-header-authentication.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-API-authorization.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-API-req-HTTP-methods.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/reference-API-parameters.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/reference-API-headers.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-auth-token.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-API-response-overview.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-API-async-mutator-transact-callback.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/concepts-API-reference-using.html
https://documentation.voss-solutions.com/release_21.4/html/src/api/api-schema.html

9.2. CUCM OpenAPI Examples

• API Model Reference

The API Model Reference provides resource details. Resources are classified by the type of model in the
system (data, device, domain, relation or view), for example, data/AccessProfile or device/cucm/Phone.

Depending on the installed modules and their feature packages, the API of feature package models
may be available, for example, relation/Subscriber or view/QuickSubscriber.

The documentation for each API example contains a link to the model reference for that call.

• API Reference

The API Reference describes the schema and the operations applicable for each resource in the
system. The documentation for each API example contains a link to the API reference for that call.

• Refer to the "OpenAPI Specification Examples" section in the HTML API Guide.

9.2. CUCM OpenAPI Examples

9.2.1. GET /tool/Macro

Overview

This section provide details on use case examples with GET tool/macro.

In each case, you will need to specify the organization hierarchy, for example, Provider, Customer, or Site,
and provide a macro that specifies the data to retrieve.

All GET calls in this OpenAPI format example point to the same endpoint, tool/macro. You will add a VOSS
Automate macro as the input parameter for this endpoint to retrieve the information you require.

The following is a basic example of the syntax of a GET request, using a macro as the input parameter, to a
fictional Automate endpoint:

GET https://<hostname>/api/tool/Macro/
?hierarchy=<hierarchy>
&method=evaluate
&input='<macro>'

Refer to the link below to view full details around the syntax, parameter values, and response samples related
to the combination of endpoint (GET tool/macro) and various macro input parameters used for retrieving
data associated to the macro:

Refer to the "Open API Specification Examples" section in the HTML API Guide.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

123

https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/index-Model-alphabetical.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/index.html

9.2. CUCM OpenAPI Examples

(GET) Customers

Fetches a list of customers and their details, in UC deployments.

Customer data is held in the following fields in VOSS Automate:

Field Description

Short Name The name of the customer.

Extended Name An extended version of the customer name.

Deal ID The external reference ID for the customer

(GET) Customers

Looks up an external reference used for customers. The external reference ID is stored in data.
HCSHcmfCustomerDAT.dealIDInfo (Automate field), for each customer.

Note: Other fields in data.HCSHcmfCustomerDAT (Automate table/model) can also be used for storing
external references and can also be looked up, using this same method.

Example 1: Fetch the list of all customers and their respective external IDs

Query parameters:

• Hierarchy: Provider

• Input: None

• Macro:

{# data.HCSHcmfCustomerDAT.shortName,extendedName,dealIDInfo #}

Example 2: Pass a customer’s external ID and fetch information for that customer only

Query Parameters:

• Hierarchy: Provider

• Input: DealIDInfo

• Macro:

{# data.HCSHcmfCustomerDAT.shortName,extendedName | dealIDInfo:<Reference ID>#}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

124

9.2. CUCM OpenAPI Examples

(GET) All Sites Belonging to the Customer

Passes the customer name to fetch a list of all sites (locations) in the system that belong to the specified
customer.

Note: You can use this macro to dynamically populate the list of sites in the ServiceNow form, enabling the
user to select the site where the standalone phone needs to be provisioned.

Query parameters:

• Hierarchy: Site

• Input: Customer Name

• Macro:

{# device.hcmf.CustomerLocation.shortName | bkCustomer_shortName:<CustomerName> #}

(GET) Directory Numbers

Fetches all directory numbers that are at a specific site, regardless of whether the numbers are available or
used.

Query parameters:

• Hierarchy: Site

• Input: None

• Macro:

{# data.InternalNumberInventory.internal_number,e164number,description,status,usage
→˓#}

(GET) Next Available Number

Fetches the next available (unused) directory number (DN) in the site.

Automate maintains the availability and status in the internal number inventory (INI). The API call uses the
flags set in the INI table to fetch the relevant information.

Query parameters:

• Hierarchy: Site

• Input: None

• Macro:

{{ fn.one data.InternalNumberInventory.internal_number | status:Available |␣
→˓direction:up }}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

125

9.2. CUCM OpenAPI Examples

(GET) Phone Models

Fetches phone model information. Two options are provided:

• Fetch all phone models currently available to a customer

• Fetch all phone models currently offered to customers by the Provider

(GET) All phone models currently available to a customer

Fetches all phone models that are currently available to a customer.

Note: This is useful where a Provider supplies a selection of phone models for different customers, rather
than a general list of phone models for all of its customers.

Query parameters:

• Hierarchy: Customer

• Input: None

• Macro:

{{ data.PhoneConfigMapping.profiles.*.profile_name | name:Default }}

Note: Ensure that data.PhoneConfigMapping.profiles is cloned from the sys or provider level to the
customer level, and only retain the device types that are offered to the customer.

(GET) All phone models currently offered to customers by the provider

Fetches all phone models that are currently offered to customers by the Provider. The user selects a phone
model from the dynamically populated list, to be used in the next transaction.

Query parameters:

• Hierarchy: Customer or Site

• Input: None

• Macro:

{# data.HcsDeviceTypeDAT.name | name:/^Cisco \d\d\d\d/ | direction:up #}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

126

9.2. CUCM OpenAPI Examples

(GET) All Phones Belonging to a Customer (with PKIDs)

Fetches the following details for all phones belonging to a customer, with their PKIDs:

Phone detail Notes

PKID PKID is the database record reference of the phone in phone model
(table) that will be used for modification or deletion.

MAC Address

Phone Model

Phone Description

Phone Owner (if associ-
ated)

Line settings For example:
• Line Display
• Line Display ASCII
• Line Label
• Line Recording

Query parameters:

• Hierarchy: Customer (or) Site

• Input: None

• Macro:

{# device.cucm.Phone.__pkid,name,product,description,ownerUserName,lines.line.index,
→˓lines.line.dirn.pattern,lines.line.dis play,lines.line.displayAscii,lines.line.
→˓label,lines.recordingFlag,lines.recordingMediaSource,lines.recordingProfileName #}

(GET) Subscriber PKID and Name

Fetches the PKID, user ID, first name, and last name of all users at the customer or site hierarchy.

Query parameters:

• Hierarchy: Customer (or) Site

• Input: None

• Macro:

{# device.cucm.User.firstName,userid,__pkid,lastName #}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

127

9.2. CUCM OpenAPI Examples

(GET) All Phones

Fetches all phones at a specified hierarchy.

Query parameters:

* Hierarchy: Customer (or) Site
* Input: None
* Output(s): Phone MAC Address, Details of Phone
* Macro

customer hierarchy:

{{ fn.get_phone_choices ,,,down }}

site hierarchy:

{{ fn.get_phone_choices ,,,local }}

(GET) All Phones Belonging to a Subscriber

Fetches all phones that belong to a specified user.

Query parameters:

• Hierarchy: Site

• Input: Userid

• Macro:

{{ fn.one device.cucm.User.associatedDevices.device | userid:<usename> }}

(GET) All Phones Without Associated User

Fetches all phones at a site that do not have a owneruserid ; that is, unassociated phones.

Query parameters:

• Hierarchy: Site

• Input: None

• Output values: Phone MAC Address, Phone Description

• Macro:

{# device.cucm.Phone.name,description | ownerUserName:null | direction:local #}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

128

9.2. CUCM OpenAPI Examples

(GET) All DeviceProfiles Without Associated User

Fetches all Cisco Unified Device Profiles (UDP) at a site that are not associated to a user.

Query parameters:

• Hierarchy: Site

• Input: None

• Output value(s): UDP Name

• Macro:

{# fn.list_set_left macro.DEVICEPROFILE_LIST,macro.PHONEPROFILE_LIST_FLATTENED #}

(GET) All Line Details

Fetches all lines at a specified hierarchy.

Query parameters:

• Hierarchy: Customer (or) Site

• Input: None

• Output(s): Line record PKID, Line Pattern, Line Description, Line AlertingName, Line ASCIIAlerting-
Name

• Macro:

{# device.cucm.Line.__pkid,pattern,description,alertingname,asciialertingname #}

(GET) Subscribers Lines

Fetches all lines that belong to a subscriber.

Query parameters:

• Hierarchy: Customer (or) Site

• Input: User name

• Macro:

{{ fn.get_associated_lines <username> }}

(GET) Supported Protocols

Fetches all the protocols that a specified phone model supports.

Query parameters:

• Hierarchy: Customer

• Input: Phone Model

• Macro:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

129

9.2. CUCM OpenAPI Examples

{{device.cucm.PhoneType.ProtocolTemplates.*.Protocol | PhoneType:<Phone Model> |␣
→˓direction:up, device:macro.SITE_CUCM }}

(GET) Phone Button Templates for Phone Model

Fetches all the Phone Buttons Templates that are available in the system for a specified phone model.

Query parameters:

• Hierarchy: Customer

• Input: Phone Model, Protocol

• Macro

{{ device.cucm.PhoneType.ProtocolTemplates.*.PBT| PhoneType:<Phone Model>,␣
→˓ProtocolTemplates.*.Protocol:<Phone Protocol> | direction:up, device:macro.SITE_
→˓CUCM }}

(GET) Security Profiles for Phone Model

Fetches all the available security profiles for a specified phone model.

Query parameters:

• Hierarchy: Customer

• Input: Phone Model, Protocol

• Macro:

{{ device.cucm.PhoneType.ProtocolTemplates.*.SecurityProfile | PhoneType:<Phone␣
→˓Model>, ProtocolTemplates.*.Protocol:<Phone Protocol> | direction:up, device:macro.
→˓SITE_CUCM }}

(GET) Subscriber’s Phones and Services

Fetches the details of existing phones, lines, and services of a subscriber. You can use these details to
assign further services to a subscriber or to move a subscriber between sites.

Query parameters:

• Hierarchy: Customer

• Input: username

• Macro:

{{ fn.movesub_getguirules_on_username_change <username> }}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

130

9.2. CUCM OpenAPI Examples

(GET) Available Hierarchies of a Customer

Fetches all the available hierarchy paths for a specified customer.

Query parameters:

• Hierarchy: Customer

• Input: None

• Macro:

{# fn.friendly_path_choices,down #}

The output provides the customer hierarchy and site hierarchies.

(GET) Usernames at Customer and Downwards

Fetches all usernames at the customer hierarchy, and below.

Query parameters:

• Hierarchy: Customer

• Input: None

• Macro:

{{ fn.list_end_user_names down, fn.null }}

(GET) User Details

Fetches a user’s username, first name, last name, email, and sync_type.

Query parameters:

• Hierarchy: Site

• Input: Username

• Macro

{# data.User.username,first_name,last_name,email,sync_type | username: <username> #}

(GET) Customer Common Phone Configs

Fetches the names of all Common Phone Configs.

Query parameters:

• Hierarchy: Customer

• Input: None

• Macro:

{# device.cucm.CommonPhoneConfig.name #}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

131

9.2. CUCM OpenAPI Examples

(GET) Available Quick Add Groups

Fetches all Quick Add Groups available at a site. This will be used in Quick Add Subscriber.

Query parameters:

• Hierarchy: Site

• Input: None

• Macro

{# data.QuickAddGroups.group_name || direction:up, to:Hcs #}

(GET) Unassociated Phones of Specific Model at Site

Fetches all unassociated phones of a specified model and protocol, at a site.

Query parameters:

• Hierarchy: Site

• Input: Phone Model, Phone Protocol

Note: This query is used to pre-populate the Phone MAC Address field in Quick Subscriber.

• Macro

{{ fn.get_phone_choices <Phone Model>,<Phone Protocol>,null,up }}

9.2.2. Add a standalone Cisco phone

Overview

This API POST call adds a standalone Cisco phone.

POST https://<hostname>/api/api/view/AddPhone

References:

• OpenAPI example for view/AddPhone

• Model: view/AddPhone

• API Reference for view/AddPhone

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

132

ServiceNow-integration.html#/paths/~1api~1view~1AddPhone/post
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_AddPhone-Model.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_AddPhone-API.html

9.2. CUCM OpenAPI Examples

Using POST AddPhone

The API call involves the following tasks:

1. Identify the customer and customer hierarchy, and the site and site hierarchy.

2. Provide phone details:

• Phone MAC address

• Phone model

• Phone description

3. Provide line details:

• Directory numbers

• Line labels

• Display names

Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy

1. Fetch the list of customers and populate a drop-down list. Allow the operator to select a customer from
the list. <Customer Name>

Refer to (GET) Customers.

2. Fetch available site hierarchies for the selected customer (<Customer Name>). Allow the operator to
select the site where the phone will be added.

Refer to (GET) All Sites Belonging to the Customer

3. Resolve <Customer Hierarchy> and <Site Hierarchy>.

• <Customer Hierarchy> is the entry in the earlier step that ends with the <Customer Name>.

For example, if <Customer Name> is Innovia, the <Customer Hierarchy> will be sys.hcs.CS-P.
CS-NB.Innovia.

• <Site Hierarchy> is the entry in the earlier step that the operator selects.

For example, sys.hcs.CS-P.CS-NB.Innovia.INV-Reading, sys.hcs.CS-P.CS-NB.Innovia.
INV-New York

Step 2: Provide phone details

1. Fill out a phone description <PhoneDescription> for the description field.

2. Select a phone model:

• Populate device_type with phone models currently available to the customer.

Refer to (GET) Phone Models by passing <Customer Hierarchy>.

• User chooses a phone model, and the choice is resolved into <PhoneModel>.

3. Fill out the MAC address of the new phone in the name field.

Note: Note the input conditions for MAC address in the OpenAPI example for view/AddPhone

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

133

ServiceNow-integration.html#/paths/~1api~1view~1AddPhone/post

9.2. CUCM OpenAPI Examples

Step 2: Provide line details

1. List all available directory numbers (DN) to populate lines.

Refer to (GET) Directory Numbers.

2. User chooses a directory number (directory_number).

Note: Multiple lines can be added to one phone. Two or more lines can be ordered 1,2,. . .
(<line_(n)>).

3. For each directory number selected, user fills out:

• A line label (label: <Label (n)>)

• A display name (display: <Display Name (n)>)

Note: Note the input conditions in the OpenAPI example for view/AddPhone

Query parameters

Parameter Value

hierarchy Site

Request Payload (Body)

The box lists all parameters that could be included in the call request. These parameters are described in
the table below the box:

{
"standalone": true,
"name": "<MACAddress>",
"device_type": "<PhoneModel>",
"description": "<PhoneDescription>",
"lines": [

{
"directory_number": "<line_1>",
"label": "<Label 1>",
"display": "<Display Name 1>"

}
],
"request_meta": {
"external_id": "<id>",
"external_reference": "<Reference>",
"callback_url": "<url_string>",
"callback_username": "<callback_username>",
"callback_password": "<callback_password>"
}

}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

134

ServiceNow-integration.html#/paths/~1api~1view~1AddPhone/post

9.2. CUCM OpenAPI Examples

The table describes the parameters in the request:

Parameter Description Type Notes

name The MAC address or phone
name of the new phone.

string The form field should check the following in-
puts:

• Max value: 15 characters
• The first 3 characters must be SEP
• Following the first 3 characters, the next

12 characters must consist of hexadeci-
mal characters.

device_type The phone model. string A drop-down with available phone types. The
operator selects a phone model.

description The phone description. string Max value: 30 characters

lines Line details for each line
added.

array Line is populated by listing all directory num-
bers (DNs) available, and then allowing the
user to select a DN. Multiple lines can be
added to a phone. Two or more lines can
be ordered 1,2,. . . (<line (n)>)

• <directory_number> (Line number)
• <label> (Line Label)

– User input text field
– Value <Label (n)>
– Max characters (for each line

added): 30
• <display> (Display Name)

– User input text field
– Value: <Display Name (n)>
– Max characters (for each line

added): 30

request_meta Contains callback details. object These details enable VOSS Automate to up-
date the status when the initiated transaction
is complete.

9.2.3. Add a Cisco subscriber

Overview

This API POST call creates a new Cisco subscriber.

POST https://<hostname>/api/api/view/QuickSubscriber

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

135

9.2. CUCM OpenAPI Examples

References:

• OpenAPI example for view/QuickSubscriber

• Model: view/QuickSubscriber

• API Reference for view/QuickSubscriber

Using POST QuickSubscriber

Creating a new Cisco subscriber involves the following tasks:

1. Identify the customer and customer hierarchy, and the site and site hierarchy.

2. Hardcode the value of lookUpForUser to true in the payload.

3. Resolve the user details and credentials.

4. Retrieve lines and select the lines to be assigned.

5. Retrieve Quick Add Groups.

6. Select services for the subscriber.

7. Allocate soft phones for the subscriber

8. Allocate one or more desk phones for the subscriber

Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy

1. Fetch the list of customers and populate a drop-down list. User selects a customer from the list.
<Customer Name>

Refer to (GET) Customers.

2. Fetch available site hierarchies for the selected customer (<Customer Name>). User selects the site
where the subscriber will be added.

Refer to (GET) All Sites Belonging to the Customer

3. Resolve <Customer Hierarchy> and <Site Hierarchy>.

• <Customer Hierarchy> is the entry in the earlier step that ends with the <Customer Name>.

For example, if <Customer Name> is Innovia, the <Customer Hierarchy> will be sys.hcs.CS-P.
CS-NB.Innovia.

• <Site Hierarchy> is the entry in the earlier step that the operator selects.

For example, sys.hcs.CS-P.CS-NB.Innovia.INV-Reading, sys.hcs.CS-P.CS-NB.Innovia.
INV-New York

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

136

ServiceNow-integration.html#/paths/~1api~1view~1QuickSubscriber/post
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_QuickSubscriber-Model.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_QuickSubscriber-API.html

9.2. CUCM OpenAPI Examples

Step 2: Set lookUpForUser to True in the payload

1. In the payload, hardcode the value for lookUpForUser to true.

Step 3: Resolve user details and credentials

1. Fetch all available users currently in the customer to populate the user_username drop-down.

Refer to (GET) Usernames at Customer and Downwards (Customer hierarchy).

2. The user can either select a value from the drop-down (for LDAP users synced in from CUCM or Active
Directory), or they can fill out a username (for local users).

Choose an option, and follow the relevant steps for the use case:

• Option 1: User selects an existing name from the drop-down:

a. Resolve <user_username> to the selected value:

1. Run (GET) User Details to fetch the users detail stored in the system, and resolve the
returned values to user_firstname, user_lastname and user_email.

2. Does the sync_type in the returned data contain the word “LDAP”?

– Yes. In this case, disable the following fields: username, firstname, lastname, email,
and password.

Populate the following fields with the values returned in (GET) User Details

Do not send <user_password> in the payload.

– No. In this case, populate the following fields with the values fetched from (GET) User
Details: firstname, lastname, email

Keep these fields enabled to allow the user to change values if they wish.

Keep the password field enabled, allowing the user to fill out a password (which is
resolved in <user_password>, in the payload.

• Option 2: User enters a new value for username:

a. User inputs values for the following fields: firstname, lastname, email

b. Resolve these values to the following: <user_firstname>, <user_lastname>, <user_email>

c. User fills out a password (password), which resolves to <user_password>.

3. User fills out the voicemail / Extension Mobility PIN in pin, which resolves to <user_vm_em_pin>

Step 4: Retrieve the lines to be assigned

1. List all available directory numbers (DN) to populate lines.

Refer to (GET) Directory Numbers (at the site hierarchy)

Note: Values in the drop-down should be the concatenation of values fetched (“internal_number
| e164number | status”). For example, “1084000 | +441184121000 | Available”,”1084010 |
+441184121010 | Used”.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

137

9.2. CUCM OpenAPI Examples

2. User chooses a directory number (directory_number).

Note: Multiple lines can be added to one phone. Two or more lines can be ordered 1,2,. . .
(<line_(n)>).

Step 5: Retrieve Quick Add Groups

1. Populate read-only qagroup_name drop-down with values from the system.

Refer to (GET) Available Quick Add Groups

Display that value in the list as default (“78XX Reference Quick Add Group”).

2. Set <qag_name> with the default value or a selected value.

Step 6: Select services for the subscriber

• Voicemail service:

If user selects the Voicemail checkbox, set the value for <voicemail> to True
(<voicemail_reqd_true_false> = true)

• Extension Mobility service:

If the user selects the Extension Mobility checkbox, set the value for <mobility> to True
(<extnmobility_reqd_true_false> = true)

Step 7: Allocate a soft phone for a subscriber

1. If the user selects the Cisco Jabber Phone checkbox, they can assign one or more jabber devices.

Device names are allocated using an API call specific to the device type selected:

• <android_jabber_device_name>

GET https://ucprovision.voss-solutions.com/api/tool/Macro/?method=evaluate&
→˓input={{ fn.jabber_device_name 'Cisco Dual Mode for Android', <user_username>␣
→˓}}

• <csf_jabber_device_name>

GET https://ucprovision.voss-solutions.com/api/tool/Macro/?method=evaluate&
→˓input={{ fn.jabber_device_name 'Cisco Unified Client Services Framework',
→˓<user_username> }}

• <ipad_jabber_device_name>

GET https://ucprovision.voss-solutions.com/api/tool/Macro/?method=evaluate&
→˓input={{ fn.jabber_device_name 'Cisco Jabber for Tablet', <user_username> }}

• <iphone_jabber_device_name>

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

138

9.2. CUCM OpenAPI Examples

GET https://ucprovision.voss-solutions.com/api/tool/Macro/?method=evaluate&
→˓input={{ fn.jabber_device_name 'Cisco Dual Mode for iPhone', <user_username> }
→˓}

Step 8: Allocate desk phones for a subscriber

1. If the user selects the Allocate Deskphone checkbox, set the value for <voice> to true, and enable
and display the relevant fields.

2. Fetch available phone types, and allow the user to select a phone model, which resolves into
<deskphone_model>

Refer to (GET) Phone Models (<Site Hierarchy>)

3. Once a value is selected for <deskphone_model>, populate the following fields:

• <phone_protocol>

User selects a phone protocol (<phone_protocol>)from the drop-down. The chosen option is
resolved as the value (<deskphone_protocol>)

Refer to (GET) Supported Protocols (using <Site Hierarchy> and <deskphone_model>)

• <button_template>

Users selects a phone button template (<button_template>) from the drop-down, which is
resolved as the value for <deskphone_pbt_name>

Refer to (GET) Phone Button Templates for Phone Model

• "phone_name": "<deskphone_MAC_address>

In the “Phone MAC Address” drop-down, populate unassociated phones that belong to
<deskphone_model>, currently in this site.

Refer to (GET) Unassociated Phones of Specific Model at Site

Choose one of the following options:

– User selects one value, which resolves to <deskphone_MAC_address>.

Alternatively:

– Users fills out a MAC address for <deskphone_MAC_address>.

Note: Note the input conditions for MAC address in the OpenAPI example for
view/QuickSubscribe

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

139

ServiceNow-integration.html#/paths/~1api~1view~1QuickSubscriber/post
ServiceNow-integration.html#/paths/~1api~1view~1QuickSubscriber/post

9.2. CUCM OpenAPI Examples

Query parameters

Parameter Value

hierarchy Site

Request Payload (Body)

The box lists all parameters that could be included in the call request. These parameters are described in
the table below the box:

{
"lookUpForUser": true,
"username": "<user_username>",
"firstname": "<user_firstname>",
"lastname": "<user_lastname>",
"email": "<user_email>",
"password": "<user_password>",
"pin": "<user_vm_em_pin>",
"lines": [
{

"directory_number": "<line_1>"
},
{

"directory_number": "<line_2>"
}
],
"qagroup_name": "<qag_name>",
"voice": <deskphone_reqd_true_false>,
"phone_type": "<deskphone_model>",
"phone_protocol": "<deskphone_protocol>",
"button_template": "<deskphone_pbt_name>",
"phones": [
{

"phone_name": "<deskphone_MAC_address>"
}
],
"voicemail": <voicemail_reqd_true_false>,
"mobility": <extnmobility_reqd_true_false>,
"jabber": <jabber_reqd_true_false>,
"jabber_devices": [
{

"jabber_agent": "android",
"device_name": "<android_jabber_device_name>"

},
{

"jabber_agent": "csf",
"device_name": "<csf_jabber_device_name>"

},
{

"jabber_agent": "ipad",

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

140

9.2. CUCM OpenAPI Examples

(continued from previous page)

"device_name": "<ipad_jabber_device_name>"
},
{

"jabber_agent": "iphone",
"device_name": "<iphone_jabber_device_name>"

}
],
"request_meta": {
"external_id": "<id>",
"external_reference": "<Reference>",
"callback_url": "<url_string>",
"callback_username": "<callback_username>",
"callback_password": "<callback_password>"
}

}

The table describes the parameters in the request:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

141

9.2. CUCM OpenAPI Examples

Parameter Description Type Notes

username The username. string For local users, the operator enters the
user details (username, firstname, last-
name, and email) in the form.
For Active Directory (AD) users, the
user details (username, firstname, last-
name, and email) are fetched from the
system, and the form fields are read-
only.

firstname The user’s first
name.

string For local users, the operator enters the
user details (username, firstname, last-
name, and email) in the form.
For Active Directory (AD) users, the
user details (username, firstname, last-
name, and email) are fetched from the
system, and the form fields are read-
only.

lastname The user’s last
name.

string For local users, the operator enters the
user details (username, firstname, last-
name, and email) in the form.
For Active Directory (AD) users, the
user details (username, firstname, last-
name, and email) are fetched from the
system, and the form fields are read-
only.

email The user’s email ad-
dress.

string For local users, the operator enters the
user details (username, firstname, last-
name, and email) in the form.
For Active Directory (AD) users, the
user details (username, firstname, last-
name, and email) are fetched from the
system, and the form fields are read-
only.

password The user’s pass-
word.

string For local users, the operator enters the
user password in the form.
For Active Directory (AD) users, the
user password is not relevant, and the
password field is hidden on the form.

pin Voicemail/ ex-
tension mobility
PIN.

string

lines One or more user
lines.

array of objects Multiple lines can be added to a phone,
and are ordered 1,2, and so on.
“directory_number”:”line_1”, “di-
rectory_number”:”line_2”, “direc-
tory_number”: “line_n”

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

142

9.2. CUCM OpenAPI Examples

Parameter Description Type Notes

qagroup_name The Quick Add
Group name

string Part of the desk phone details, which
includes qagroup_name, phone_type,
phone_protocol, phone_name.

voice Desk phone. boolean Defines whether a
desk phone is required.
<deskphone_reqd_true_false>
Default is False.

phone_type The phone model. string Part of the desk phone details, which
includes qagroup_name, phone_type,
phone_protocol, phone_name.
Displays when "voice": true.

phone_protocol The desk phone
protocol.

string Part of the desk phone details, which
includes qagroup_name, phone_type,
phone_protocol, phone_name.

button_template The desk phone
button template
name.

string

phones One or more
phones.

array of objects. Includes the desk phone MAC address
(phone_name) for each of the user’s
phones.

voicemail Voicemail service boolean Defines whether the voice-
mail service is required.
<voicemail_reqd_true_false>
The default is False.

mobility Extension mobility
service

boolean Defines whether the extension
mobility service is required.
<extnmobility_reqd_true_false>
The default is False.

jabber Jabber service
(True/False)

boolean Allows allocation of soft phones.
<jabber_reqd_true_false>
The default is False.

jabber_devices One or more Jab-
ber devices.

array of objects If <jabber>=True, the list of Jab-
ber devices, specifying a value for
<jabber_agent> and <device_name>
Four types of jabber devices can be as-
signed:

• “android”
• “ipad”
• “iphone”
• “windows”

request_meta Callback details. object These details enable VOSS Automate
to update the status when the initiated
transaction is complete.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

143

9.2. CUCM OpenAPI Examples

9.2.4. Reset a CUCM PIN/password and/or CUC PIN

Overview

This API POST call resets passwords and PINs for the following:

1. CUCM (Cisco Unified Communications Manager) PIN, used for extension mobility

2. CUCM (Cisco Unified Communications Manager) password for Jabber (if device is associated to a
CUCM local user)

3. CUC (Cisco Unified Unity) voicemail PIN

POST https://<hostname>/api/api/view/ResetUCPasswordPinVIEW

References:

• OpenAPI Example for view/ResetUCPasswordPinVIEW

• Model: view/ResetUCPasswordPinVIEW

• API Reference for view/ResetUCPasswordPinVIEW

Using POST ResetUCPasswordPinVIEW

Resetting a CUCM PIN/password and/or CUC PIN involves the following tasks:

1. Identify the customer and the customer’s hierarchy.

2. Define whether the password/PIN reset is for CUCM (Extension Mobility PIN and Jabber password)
and/or CUC voicemail PIN.

3. Resolve the user details and credentials.

4. Allow user to fill out a PIN.

Step 1: Identify Customer+Customer Hierarchy

1. Fetch the list of customers and populate a drop-down list, and allow the user to select a customer from
the list. <Customer Name>

Refer to (GET) Customers.

2. Fetch available hierarchies for the selected customer (<Customer Name>).

Refer to (GET) Available Hierarchies of a Customer

3. Resolve <Customer Hierarchy>.

<Customer Hierarchy> is the entry from step 2 that ends with the <Customer Name>).

For example, if <Customer Name> is Innovia, the <Customer Hierarchy> will be sys.hcs.CS-P.CS-NB.
Innovia.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

144

ServiceNow-integration.html#/paths/~1api~1view~1ResetUCPasswordPinVIEW/post
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_ResetUCPasswordPinVIEW-Model.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_ResetUCPasswordPinVIEW-API.html

9.2. CUCM OpenAPI Examples

Step 2: Define whether the password/PIN reset is for CUCM or CUC

1. The user is presented with two checkboxes on the GUI, one for CUCM and one for CUC.

• <cucm_checkbox_boolean>

• <cuc_checkbox_boolean>

2. Users can select one or both checkboxes.

When selected, set the value for the relevant fields to true, else, set to false.

Step 3: Resolve user details and credentials

1. Fetch all available users currently in the customer to populate the user_username drop-down, and
allow the user to select a value.

Refer to (GET) Usernames at Customer and Downwards (Customer hierarchy)

2. Fetch user details stored in the system to identify whether it is a LDAP user or a local user.

Refer to (GET) User Details

3. Does the sync_type in the data returned contain the word “LDAP”?

• Yes. Disable the password field, and do bot send <password_value> in the payload.

• No. Keep the password field enabled, allowing the user to fill out a password, which resolves to
<password_value> in the payload.

4. Provide a text field titled “Voicemail/Extension Mobility PIN”, and allow the user to fill out a PIN, which
resolves to <pin_value>.

Note: Validate form field to only allow numeric values.

Query parameters

Parameter Value

hierarchy Site

Request Payload (Body)

The box lists all parameters that could be included in the call request. These parameters are described in
the table below the box:

{
"user": "<username>",
"cucm": <cucm_checkbox_boolean>,
"cuc": <cuc_checkbox_boolean>,
"password": "<password_value>",
"pin": "<pin_value>",
"request_meta": {

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

145

9.2. CUCM OpenAPI Examples

(continued from previous page)

"external_id": "<id>",
"external_reference": "<Reference>",
"callback_url": "<url_string>",
"callback_username": "<callback_username>",
"callback_password": "<callback_password>"

}
}

The table describes the parameters in the request:

Parameter Description Type Notes

user The username. string

cucm CUCM. boolean Defines whether the pass-
word/PIN reset is for CUCM.
<cucm_checkbox_boolean>
Default is False. Set to True to reset a
CUCM PIN or password.

cuc CUC boolean Defines whether the pass-
word/PIN reset is for CUC.
<cuc_checkbox_boolean>
Default is False. Set to True to reset a
CUC PIN.

password The Jabber pass-
word.

string When value for
<cucm_checkbox_boolean> is
True, set the Jabber password in
<password_value>.

pin The Extension Mo-
bility or Voicemail
PIN.

integer When value for
<cucm_checkbox_boolean> and/or
<cuc_checkbox_boolean> is True, set
a numeric PIN for CUCM Extension
Mobility and CUC voicemail.

request_meta Callback details. object These details enable VOSS Automate
to update the status when the initiated
transaction is complete.

9.2.5. Replace a Cisco phone

Overview

This API POST call replaces an existing Cisco phone with a new phone.

POST https://<hostname>/api/api/view/ReplacePhone_VIEW

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

146

9.2. CUCM OpenAPI Examples

References:

• OpenAPI example for

• Model: view/ReplacePhone_VIEW

• API Reference for view/ReplacePhone_VIEW

Using POST ReplacePhone_VIEW

Replacing a Cisco phone involves the following tasks:

1. Identify the customer and customer hierarchy, and the site and site hierarchy.

2. Populate a list of existing phones in the site, and allow user to choose the phone to be replaced.

3. User provides details for the replacement phone.

Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy

1. Fetch the list of customers to populate a drop-down list, and allow the user to select a customer from
the list. <Customer Name>

Refer to (GET) Customers.

2. Fetch available site hierarchies for the selected customer (<Customer Name>), and allow the user to
select the site where the phone will be replaced.

Refer to (GET) All Sites Belonging to the Customer

3. Resolve <Customer Hierarchy> and <Site Hierarchy>.

• <Customer Hierarchy> is the entry in the earlier step that ends with the <Customer Name>.

For example, if <Customer Name> is Innovia, the <Customer Hierarchy> will be sys.hcs.CS-P.
CS-NB.Innovia.

• <Site Hierarchy> is the entry in the earlier step that the operator selects.

For example, sys.hcs.CS-P.CS-NB.Innovia.INV-Reading

Step 2: Populate a list of existing phones at the site

1. Fetch all phones currently available to the customer to populate a list of existing phones
(existing_phone) at the site.

Refer to (GET) Phone Models

2. User select the MAC address of the existing phone that must be replaced (<old_phone_MAC_Address>).

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

147

ServiceNow-integration.html#/paths/~1api~1view~1ReplacePhone_VIEW/post
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_ReplacePhone_VIEW-Model.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_ReplacePhone_VIEW-API.html

9.2. CUCM OpenAPI Examples

Step 3: Provide replacement phone details

In this step the user fills out the details of the replacement phone:

1. Users fills out the replacement phone MAC address in replacement_phone, and the value is resolved
to <new_phone_MAC_Address>.

Note: Note the input conditions for the MAC address in the OpenAPI example for

2. Fetch the available phone models to populate replacement_model.

Refer to (GET) Phone Models.

Note: Depending on how Automate is set, fetch either all phone models currently available to the
customer, or fetch all phone models currently offered to customers by the Provider.

3. Fetch the phone protocols that the replacement phone model supports, to populate protocol.

Pass new_phone_model in the GET query.

Refer to (GET) Supported Protocols.

4. Fetch all available phone button templates for the phone model to populate pbt.

Refer to (GET) Phone Button Templates for Phone Model

5. Fetch available security profiles for the replacement phone model to populate security_profile.

Refer to (GET) Security Profiles for Phone Model

6. User fills out a phone description for replacement_description.

Query parameters

Parameter Value

hierarchy Site

Request Payload (Body)

The box lists all parameters that could be included in the call request. These parameters are described in
the table below the box:

{
"existing_phone": "<old_phone_MAC_Address>",
"replacement_phone": "<new_phone_MAC_Address>",
"replacement_model": "<new_phone_model>",
"protocol": "<new_phone_protocol>",
"pbt": "<new_phone_PBT>",
"security_profile": "<new_phone_SecProfile>",
"replacement_description": "<new_phone_Description>",
"request_meta": {

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

148

ServiceNow-integration.html#/paths/~1api~1view~1ReplacePhone_VIEW/post

9.2. CUCM OpenAPI Examples

(continued from previous page)

"external_id": "<external-id>",
"external_reference": "<external_)reference>",
"callback_url": "<callback_url_or_ip",
"callback_username": "callback_username",
"callback_password": "callback_password"
}

}

The table describes the parameters in the request:

Parameter Description Type Notes

existing_phone Existing phone
name.

string The MAC address of the existing phone,
the phone to be replaced.

replacement_phone Replacement
phone name.

string The MAC address of the replacement
phone.

replacement_model Replacement
phone model.

string Choose from existing phone models
available.

protocol The phone proto-
col.

string The phone protocols that the replace-
ment phone model supports.

pbt The phone button
template.

string The phone button templates that are
available in the system for the specified
replacement phone model.

security_profile The phone security
profile.

string The phone security profile for the re-
placement phone model.

replacement_descriptionNew phone descrip-
tion.

string A phone description for the new, re-
placement

request_meta Callback details. object These details enable VOSS Automate
to update the status when the initiated
transaction is complete.

9.2.6. Associate an existing Cisco device or device profile to subscriber

Overview

This API POST call associates a standalone phone (Cisco device) or standalone Cisco Unified Device Profile
(UDP) to a subscriber.

POST https://<hostname>/api/api/view/GS_AddDeviceToUser_VIEW

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

149

9.2. CUCM OpenAPI Examples

References:

• OpenAPI example for view/GS_AddDeviceToUser_VIEW

• Model: view/GS_AddDeviceToUser_VIEW

• API Reference for view/GS_AddDeviceToUser_VIEW

Using POST GS_AddDeviceToUser_VIEW

Associating an existing device or UDP to an existing subscriber involves the following tasks:

1. Identify the customer and customer hierarchy, and the site and site hierarchy.

2. Populate a list of users to which the Cisco device or UDP can be associated.

3. Assign the unassociated Cisco device or UDP.

Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy

1. Fetch the list of customers to populate a drop-down list, and allow the user to select a customer from
the list. <Customer Name>

Refer to (GET) Customers.

2. Fetch available site hierarchies for the selected customer (<Customer Name>), and allow the user to
select the relevant site.

Refer to (GET) All Sites Belonging to the Customer

3. Resolve <Customer Hierarchy> and <Site Hierarchy>.

• <Customer Hierarchy> is the entry in the earlier step that ends with the <Customer Name>.

For example, if <Customer Name> is Innovia, the <Customer Hierarchy> will be sys.hcs.CS-P.
CS-NB.Innovia.

• <Site Hierarchy> is the entry in the earlier step that the operator selects.

For example, sys.hcs.CS-P.CS-NB.Innovia.INV-Reading

Step 2: Retrieve users and choose a user

1. Populate the list of existing users at the site, displaying username, firstname, and lastname.

Refer to (GET) Subscriber PKID and Name, passing the site hierarchy (<Site Hierarchy>).

2. User selects one user from the list, and resolve the choice to <username>.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

150

ServiceNow-integration.html#/paths/~1api~1view~1GS_AddDeviceToUser_VIEW/post
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_GS_AddDeviceToUser_VIEW-Model.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_GS_AddDeviceToUser_VIEW-API.html

9.2. CUCM OpenAPI Examples

Step 3: Assign unassociated Cisco device or UDP

1. The form provides two radio buttons. The user selects one option, either Device or Device Profile:

• If user selects “Device”:

a. For newDeviceType, assign the value phone for <device_or_udp>

b. Use (GET) All Phones Without Associated User to fetch all unassociated devices at the site.

c. User selects one device (phone) at newDeviceName, and the selected value is resolved to
<device_or_udp_name>.

• If user selects “Device Profile”:

a. For newDeviceType, assign the value deviceProfile to <device_or_udp>

b. Use (GET) All DeviceProfiles Without Associated User to fetch all unassociated device profiles
at the site.

c. Users selects a device profile at newDeviceName, and the selected value is resolved to
<device_or_udp_name>.

Query parameters

Parameter Value

hierarchy Site

Request Payload (Body)

The box lists all parameters that could be included in the call request. These parameters are described in
the table below the box:

{
"username": "<username>",
"newDeviceType": "<device_or_udp>",
"newDeviceName": "<device_or_udp_name>",
"request_meta": {
"external_id": "<external-id>",
"external_reference": "<external_)reference>",
"callback_url": "<callback_url_or_ip",
"callback_username": "<callback_username>",
"callback_password": "<callback_password>"
}

}

The table describes the parameters in the request:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

151

9.2. CUCM OpenAPI Examples

Parameter Description Type Notes

username The username. string

newDeviceType The device type. string Device type, either Cisco device
(phone), or Cisco UDP (device profile).

newDeviceName The device name. string The name of an unassociated device or
unassociated device profile name

request_meta Callback details. object These details enable VOSS Automate
to update the status when the initiated
transaction is complete.

9.2.7. Disassociate a Cisco phone from a subscriber

Overview

This API POST call removes a subscriber-phone association to make it an unassigned (standalone) Cisco
phone (device).

POST https://<hostname>/api/api/view/GS_removeDeviceFromUser_VIEW

References:

• OpenAPI example for view/GS_removeDeviceFromUser_VIEW

• Model: GS_removeDeviceFromUser_VIEW

• API Reference for GS_removeDeviceFromUser_VIEW

Using POST GS_removeDeviceFromUser_VIEW

Replacing a Cisco phone involves the following tasks:

1. Identify the customer and customer hierarchy, and the site and site hierarchy.

2. Identify the user and device to disassociate.

Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy

1. Fetch the list of customers to populate a drop-down list, and allow the user to select a customer from
the list. <Customer Name>

Refer to (GET) Customers.

2. Fetch available site hierarchies for the selected customer (<Customer Name>), and allow the user to
select the relevant site.

Refer to (GET) All Sites Belonging to the Customer

3. Resolve <Customer Hierarchy> and <Site Hierarchy>.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

152

ServiceNow-integration.html#/paths/~1api~1view~1GS_removeDeviceFromUser_VIEW/post
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_GS_removeDeviceFromUser_VIEW-Model.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_GS_removeDeviceFromUser_VIEW-API.html

9.2. CUCM OpenAPI Examples

• <Customer Hierarchy> is the entry in the earlier step that ends with the <Customer Name>.

For example, if <Customer Name> is Innovia, the <Customer Hierarchy> will be sys.hcs.CS-P.
CS-NB.Innovia.

• <Site Hierarchy> is the entry in the earlier step that the operator selects.

For example, sys.hcs.CS-P.CS-NB.Innovia.INV-Reading

Step 2: Identify the user and device to disassociate

1. Fetch users to populate the list of users for username.

Refer to (GET) Subscriber PKID and Name

Note: Hide the PKID. Display only the following, for username: username, first name, last name

2. User selects a username. Resolve the value to <username>.

3. Fetch all phones associated to the selected user to populate oldDeviceName.

Refer to (GET) All Phones Belonging to a Subscriber

4. Users selects the phone to be unassigned. Resolve the chosen value to <MAC_Address>.

Request Payload (Body)

The box lists all parameters that could be included in the call request. These parameters are described in
the table below the box:

{
"username": "<username>",
"oldDeviceName": "<MAC_Address>",
"request_meta": {
"external_id": "<external-id>",
"external_reference": "<external_)reference>",
"callback_url": "<callback_url_or_ip",
"callback_username": "<callback_username>",
"callback_password": "<callback_password>"
}

}

The table describes the parameters in the request:

Parameter Description Type Notes

username The username. string

oldDeviceName Associated device
name.

string The name of the device you’re remov-
ing.

request_meta Callback details. object These details enable VOSS Automate
to update the status when the initiated
transaction is complete.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

153

9.2. CUCM OpenAPI Examples

9.2.8. Move a Cisco subscriber between sites

Overview

This API POST call moves a Cisco subscriber (and their services and devices) between sites, creates one or
more new lines during the move, and assigns the new lines to the devices/services.

POST https://<hostname>/api/api/view/UserPhoneMoveUsers_VIEW

References:

• OpenAPI example for view/UserPhoneMoveUsers_VIEW

• Model: view/UserPhoneMoveUsers_VIEW

• API Reference for view/UserPhoneMoveUsers_VIEW

Using POST UserPhoneMoveUsers_VIEW

Moving a subscriber and their services/devices involves the following tasks:

1. Identify the customer and customer hierarchy.

2. Identify the subscriber to be moved, as well as their devices and/or services.

3. Choose the target site.

4. Define whether new lines will be assigned in the target site, or whether to move existing lines.

5. Define whether new phones will be assigned in the target site (with the profile moved from the existing
phone), and/or whether to move existing phones belonging to the subscriber.

6. Allocate the default CUC template defined in the site defaults.

7. Hardcode values in the payload.

Step 1: Identify Customer+Customer Hierarchy

1. Fetch the list of customers to populate a drop-down, and allow the user to select a customer from the
list. <Customer Name>

Refer to (GET) Customers.

2. Fetch available site hierarchies for the selected customer (<Customer Name>).

Refer to (GET) All Sites Belonging to the Customer

3. Resolve <Customer Hierarchy>.

<Customer Hierarchy> is the entry in the earlier step that ends with the <Customer Name>.

For example, if <Customer Name> is Innovia, the <Customer Hierarchy> will be sys.hcs.CS-P.CS-NB.
Innovia.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

154

ServiceNow-integration.html#/paths/~1api~1view~1UserPhoneMoveUsers_VIEW/post
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_UserPhoneMoveUsers_VIEW-Model.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/view_UserPhoneMoveUsers_VIEW-API.html

9.2. CUCM OpenAPI Examples

Step 2: Identify the subscriber to be moved

In this step, identify the subscriber to be moved, as well as their associated devices and/or services.

1. Populate a list of usernames, and allow the user to select one user (<username>).

Refer to (GET) Subscriber PKID and Name

Note: Hide the PKID. Display only the username, firstname, and lastname in the form.

2. Use (GET) Subscriber’s Phones and Services to fetch the details of all the selected subscriber’s
phones, lines, and services.

3. Segregate and collate the data into the following read-only GUI fields:

• “Existing Phones”

• “Existing DeviceProfiles”

• “Existing Voicemail”

• “Existing SNR”

4. Populate the read-only field, “Current Site”, with value collected from step 3, and assign the value to
<move_from_hn>.

Step 3: Choose the target site

1. Fetch the customer’s sites and populate the values in move_to_hn (“Move to Site”).

Refer to (GET) Available Hierarchies of a Customer

2. User selects a target site, and the value is assigned to <move_to_hn>, for example, sys.hcs.CS-P.
CS-NB.Innovia.INV-Reading.

Step 4: Add new lines or move existing lines

In this step, decide whether to assign new lines in the target site, or whether to move the subscriber’s existing
lines.

1. Define whether to move lines to the target site, via the form checkbox titled “Move Line”
(<move_line_trueFalse>).

2. Define whether to allocate new lines in the target site when the subscriber is moved, via the checkbox
titled “Allocate New Line(s)” <new_line_truefalse>.

If “Move Line” and “Allocate New Line(s)” are selected (value: true), the system attempts to move
existing lines to the target site and also creates new lines (one or more) in the target site, and adds it to
the device and/or Extension Mobility.

When <new_line_truefalse> = true:

• Fetch all directory numbers currently available at this site. The user can select one value <dn>.
See tool-macro-directory-numbers-id.

• Form text field titled “Line Label” <line_label>.

• Form text field titled “Display” <line_display>.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

155

9.2. CUCM OpenAPI Examples

Step 5: Add new phones or move existing phones

In this step, define whether to assign new phones in the target site (with the profile moved from the existing
phone), or whether to move existing phones belonging to the subscriber.

1. To move desk phones, select the “Move Deskphone(s)” checkbox, setting the value for
<move_deskphone_truefalse> to True. The default is False.

2. To create new desk phones, select the “Create new Deskphone” checkbox, setting the value for
<add_new_phone_at_target_truefalse> to True. The default is False.

3. If <add_new_phone_at_target_truefalse> = True, choose an option, and follow the relevant steps:

• Option 1: Use existing phone’s config:

a. Select the “Use Existing Phone config” checkbox, setting the value for
<copy_deskphoneprofile_to_target_truefalse> to True. The default is False.

b. Populate the “Configuration of existing Phone to be used” drop-down with all phones currently
belonging to the subscriber. See (GET) Subscriber’s Phones and Services

c. User selects one phone (<phone_mac_address_at_source>).

d. Process the payload returned by the GET call.

e. Resolve the value at for field “existingPhones”, and display it in the drop-down.

f. Depending on operation selection, assign the following:

– <phone_mac_address_at_source>

– <phone_type_at_source>

• Option 2: Don’t use existing phone’s config:

a. Leave the “Use Existing Phone config” checkbox clear, setting the value for
<copy_deskphoneprofile_to_target_truefalse> to False. The default is False.

b. Set <phone_mac_address_at_source> to null.

c. Assign phone model in target site by fetching available phone models in the platform.

d. Populate the drop-down titled “Phone Model in target site” (<phone_type_at_target>).

Note: The GET call you use depends on how Automate is set up, either all phone models
available to the customer, or all phone models the provider makes available to the customer.

Refer to (GET) Phone Models

4. Fill out the MAC Address of the phone in the target site in a text field (name), and resolve the value to
<new_phone_MAC_Address>.

Note: Note the input conditions for the MAC address at OpenAPI example for
view/UserPhoneMoveUsers_VIEW

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

156

ServiceNow-integration.html#/paths/~1api~1view~1UserPhoneMoveUsers_VIEW/post
ServiceNow-integration.html#/paths/~1api~1view~1UserPhoneMoveUsers_VIEW/post

9.2. CUCM OpenAPI Examples

Step 6: Allocate the default CUC template defined in the site defaults

1. Execute the following GET request to allocate the default CUC template from the Site Defaults:

GET https://servername/api/tool/Macro/?hierarchy=<move_to_hn>&method=evaluate&
→˓format=json&input={%23 data.SiteDefaultsDoc.defaultcucsubscribertemplate ||␣
→˓direction:local %23}

Example:

GET https://servername/api/tool/Macro/?hierarchy=sys.hcs.CS-P.CS-NB.Innovia.INV-
→˓Reading&method=evaluate&format=json&input={%23 data.SiteDefaultsDoc.
→˓defaultcucsubscribertemplate || direction:local %23}

2. Assign the value returned from the GET call, to <default_vm_template>.

Note: You will only need to include <default_vm_template> in the payload if the user being moved
to the other site has voicemail.

Step 7: Hardcode values in the payload

1. Hardcode the following values in the payload:

• Set AllowLineMove to true (<move_line_truefalse>)

• Set default_css to true

• Set default_dp to true

Query parameters

Parameter Value

hierarchy Customer

Request Payload (Body)

The box lists all parameters that could be included in the call request. These parameters are described in
the table below the box:

{
"username": "<username>",
"move_from_hn": "<move_from_hn>",
"move_to_hn": "<move_to_hn>",
"move_line": <move_line_truefalse>,
"AllowLineMove": <move_line_truefalse>,
"new_line": <new_line_truefalse>,
"lines": [

(continues on next page)

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

157

9.2. CUCM OpenAPI Examples

(continued from previous page)

{
"directory_number": "<line_1>",
"label": "<line_label1>",
"display": "<line_display1>"

},
{

"directory_number": "<line_2>",
"label": "<line_label2>",
"display": "<line_display2>"

}
],

"move_phone": <move_deskphone_truefalse>,
"new_phone": <add_new_phone_at_target_truefalse>,
"new_phone_from_source": <copy_deskphoneprofile_to_target_truefalse>,
"new_phone_config_source_product": <phone_type_at_source>,
"new_phone_config_source": "<phone_mac_address_at_source>",
"phone_type": <phone_type_at_target>,
"name": <new_phone_mac_address>,
"AllowLineMove": <include_lines_from_source_truefalse>,
"newCucUserTemplate": "<default_vm_template>",
"default_dp": true,
"default_css": true

"request_meta": {
"external_id": "<external-id>",
"external_reference": "<external_reference>",
"callback_url": "<callback_url_or_ip",
"callback_username": "<callback_username>",
"callback_password": "<callback_password>"

}
}

The table describes the parameters in the request:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

158

9.2. CUCM OpenAPI Examples

Parameter Description Type Notes

username The username. string

move_from_hn Source site. string The name of the site where you’re mov-
ing the subscriber from.

move_to_hn Target site. string The name of the site where you’re mov-
ing the subscriber to.

move_line Whether line move
is allowed.

boolean Defines whether existing lines need to
be moved to the new site. True or False.
Default is False.

AllowLineMove Whether to move
lines.

boolean True or False. Default is False.

new_line Whether to allocate
new lines.

boolean Defines whether to allocate new lines
in the target site when moving the sub-
scriber. Default is True.

lines Line details. array For each line you add, the directory
number, the line label, and the line dis-
play name.

move_phone Whether to move
the phone.

boolean True or False.

new_phone Whether to add a
new phone.

boolean True or False.

new_phone_from_sourceWhether to create a
new phone from ex-
isting phone.

boolean True or False.

new_phone_config_source_productType of phone. string The source phone type.

new_phone_config_sourceConfiguration
source.

string New phone’s configuration source.

phone_type The phone type. string Phone type at target site.

name The phone name string The MAC address of the phone.
• Max value: 15 characters
• The first 3 characters must be SEP
• Following the first 3 characters,

the next 12 characters must con-
sist of hexadecimal characters.

AllowLineMove Whether to include
lines in the move.

string True or False.

newCucUserTemplate Default CUC tem-
plate.

string This value is defined in the Site De-
faults.

default_dp boolean Hardcode this value to True.

default_css The CSS boolean Hardcode this value to True.

request_meta Callback details. string These details enable VOSS Automate
to update the status when the initiated
transaction is complete.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

159

9.2. CUCM OpenAPI Examples

9.2.9. Modify line data

Overview

This API PATCH call updates the following device line information:

• Line description

• Line alerting name

• Line alerting name ASCII

PATCH https://<hostname>/api/api/device/cucm/Line/{Line PKID}

Where {Line PKID} is the ID of the line to update.

References:

• OpenAPI example for device/cucm/Line/{Line PKID}

• Model: device/cucm/Line

• API Reference for device/cucm/Line

Using device/cucm/Line/{Line PKID}

Using this API call involves the following tasks:

1. Identify the customer and the customer’s hierarchy, and the site and the site hierarchy.

2. Resolve the line that needs to be modified, and modify line details, as required.

Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy

1. Fetch the list of customers to populate a drop-down list, and allow the user to select a customer from
the list. <Customer Name>

Refer to (GET) Customers.

2. Fetch available site hierarchies for the selected customer (<Customer Name>), and allow the user to
select the relevant site.

Refer to (GET) All Sites Belonging to the Customer

3. Resolve <Customer Hierarchy> and <Site Hierarchy>.

• <Customer Hierarchy> is the entry in the earlier step that ends with the <Customer Name>.

For example, if <Customer Name> is Innovia, the <Customer Hierarchy> will be sys.hcs.CS-P.
CS-NB.Innovia.

• <Site Hierarchy> is the entry in the earlier step that the operator selects.

For example, sys.hcs.CS-P.CS-NB.Innovia.INV-Reading

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

160

ServiceNow-integration.html#/paths/~1api~1device~1cucm~1Line~1%7BLine%20PKID%7D/patch
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/device_cucm_Line-Model.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/device_cucm_Line-API.html

9.2. CUCM OpenAPI Examples

Step 2: Resolve the line that needs to be modified, and modify line details

1. Fetch the following line details from Automate, and present this data in separate fields:

• Line record PKID

• Line Pattern

• Line Description

• Line AlertingName

• Line ASCIIAlerting Name

Refer to (GET) All Line Details

2. User selects a line, and for the selected line, resolve the value to <Line PKID>.

3. For the selected line, the user can modify the following details to update the line:

• A line description, at description, resolved to <Line Description Text>.

• A line alerting name, at alertingName, resolved to <Line Alerting Text>

• A line ASCII alerting name, at asciiAlertingName, resolved to <Line Alerting ASCII Text>

Note: Note the input conditions for these fields, at OpenAPI Example

Query parameters

Parameter Value

hierarchy Site

Request Payload (Body)

The box lists all parameters that could be included in the call request. These parameters are described in
the table below the box:

{
"description": "<Line Description Text>",
"alertingName": "<Line Alerting Text>",
"asciiAlertingName": "<Line Alerting ASCII Text",
"request_meta": {

"external_id": "<id>",
"external_reference": "<Reference>",
"callback_url": "<url_string>",
"callback_username": "<callback_username>",
"callback_password": "<callback_password>"

}
}

The table describes the parameters in the request:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

161

ServiceNow-integration.html#/paths/~1api~1device~1cucm~1Line~1%7BLine%20PKID%7D/patch

9.2. CUCM OpenAPI Examples

Parameter Description Type Notes

description Line description. string Max 30 characters.

alertingName Line alerting name. string Max 30 characters.

asciiAlertingName Line alerting ASCII
name.

Max 30 characters.

request_meta Callback details. string These details enable VOSS Automate
to update the status when the initiated
transaction is complete.

9.2.10. Modify phone data - line recording details

Overview

This API PATCH call updates the following phone information:

• Phone description

• Line label

• Line display name

• Line ASCII display name

• Line call recording settings

PATCH https://<hostname>/api/api/device/cucm/Phone/{Phone PKID}

Where {Phone PKID} is the ID of the phone to update.

References:

• OpenAPI example for device/cucm/Phone/{Phone PKID}

• Model: device/cucm/Phone

• API Reference for device/cucm/Phone

Using device/cucm/Phone/{Phone PKID}

Using this API call involves the following tasks:

1. Identify the customer and the customer’s hierarchy, and the site and the site hierarchy.

2. Resolve the phone that needs to be modified, and modify phone details, as required.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

162

ServiceNow-integration.html#/paths/~1api~1device~1cucm~1Phone~1%7BPhone%20PKID%7D/patch
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/device_cucm_Phone-Model.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/device_cucm_Phone-API.html

9.2. CUCM OpenAPI Examples

Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy

1. Fetch the list of customers to populate a drop-down list, and allow the user to select a customer from
the list. <Customer Name>

Refer to (GET) Customers.

2. Fetch available site hierarchies for the selected customer (<Customer Name>), and allow the user to
select the relevant site.

Refer to (GET) All Sites Belonging to the Customer

3. Resolve <Customer Hierarchy> and <Site Hierarchy>.

• <Customer Hierarchy> is the entry in the earlier step that ends with the <Customer Name>.

For example, if <Customer Name> is Innovia, the <Customer Hierarchy> will be sys.hcs.CS-P.
CS-NB.Innovia.

• <Site Hierarchy> is the entry in the earlier step that the operator selects.

For example, sys.hcs.CS-P.CS-NB.Innovia.INV-Reading

Step 2: Resolve the phone that needs to be modified, and modify phone details

1. Fetch the following phone details from Automate, and present this data in separate fields:

• Phone PKID

• Phone MAC Address

• Phone Description

• Phone Line Label

• Phone Display Name

• Phone ASCII Display Name

Refer to (GET) All Phones Belonging to a Customer (with PKIDs)

Note: You can ignore other values, such as Call Recording fields.

2. User selects a phone, and for the selected phone, resolve the value to <Phone PKID>.

3. For the selected phone, the user can modify the following details to update the phone:

Note: Depending on the number of lines that the phone returns, the form needs to dynamically
populate fields relevant to lines.

• <Phone Description>

• <Line (n) Label>

• <Line (n) Display>

• <Line (n) DisplayAscii>

For example:

• <Phone Description>

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

163

9.2. CUCM OpenAPI Examples

• <Line 1 Label>

• <Line 1 Display>

• <Line 1 DisplayAscii>

• <Line 2 Label>

• <Line 2 Display>

• <Line 2 DisplayAscii>

Query parameters

Parameter Value

hierarchy Site

Request Payload (Body)

The box lists all parameters that could be included in the call request. These parameters are described in
the table below the box:

[
{

"op": "add",
"path": "/request_meta",
"value": [

{
"external_id": "<id>",
"external_reference": "<Reference>",
"callback_url": "<url_string>",
"callback_username": "<callback_username>",
"callback_password": "<callback_password>"

}
]
},
{"op": "replace","path": "/description","value": "<Phone Description>" },

{"op": "replace","path": "/lines/line/0/label","value": "<Line 1 Label>" },
{"op": "replace","path": "/lines/line/0/display","value": "<Line 1 Display>" },
{"op": "replace","path": "/lines/line/0/displayAscii","value": "<Line 1 DisplayAscii>" },

{"op": "replace","path": "/lines/line/1/label","value": "<Line 2 Label>" },
{"op": "replace","path": "/lines/line/1/display","value": "<Line 2 Display>" },
{"op": "replace","path": "/lines/line/1/displayAscii","value": "<Line 2 DisplayAscii>" }
]

The table describes the parameters in the request:

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

164

9.2. CUCM OpenAPI Examples

Parameter Description Type Notes

op string

path string

value array of objects

request_meta Callback details. object These details enable VOSS Automate
to update the status when the initiated
transaction is complete.

9.2.11. Delete a phone

Overview

This API DELETE call deletes a phone.

DELETE https://<hostname>/api/api/relation/SubscriberPhone/{Removal_Phone_PKID}

Where {Removal_Phone_PKID} is the ID of the phone to delete.

References:

• OpenAPI example for relation/SubscriberPhone/{Removal_Phone_PKID}

• Model: relation/SubscriberPhone

• API Reference for relation/SubscriberPhone

Using relation/SubscriberPhone/{Removal_Phone_PKID}

Using this API call involves the following tasks:

1. Identify the customer and the customer’s hierarchy.

2. Fetch all details of the phone to be deleted.

Step 1: Identify Customer+Customer Hierarchy

1. Fetch the list of customers to populate a drop-down list, and allow the user to select a customer from
the list. <Customer Name>

Refer to (GET) Customers

2. Fetch available hierarchies for the selected customer (<Customer Name>).

Refer to (GET) All Sites Belonging to the Customer

3. Resolve <Customer Hierarchy>.

• <Customer Hierarchy> is the entry in the earlier step that ends with the <Customer Name>.

For example, if <Customer Name> is Innovia, the <Customer Hierarchy> will be sys.hcs.CS-P.
CS-NB.Innovia.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

165

ServiceNow-integration.html#/paths/paths/~1api~1relation~1SubscriberPhone~1%7BRemoval_Phone_PKID%7D/delete
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/relation_SubscriberPhone-Model.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/relation_SubscriberPhone-API.html

9.2. CUCM OpenAPI Examples

Step 2: Fetch all details of the phone to be deleted

1. Execute tool-macro-all-phones-belonging-to-the-customer-id (at Customer hierarchy) to fetch
all phones belonging to the customer.

2. User selects the phone to be deleted.

3. Resolve the phone PKID of the selected phone, to <Removal_Phone_PKID>

Note: There is no callback for DELETE. You will need to execute a GET call containing data from the
payload to confirm the status of the call, for example:

GET https://<hostname>/api/tool/Transaction/9095e5a2-6b62-45f8-abbb-93bd908a8bef/

See the response sample output for this DELETE call in the OpenAPI example for rela-
tion/SubscriberPhone/{Removal_Phone_PKID}

9.2.12. Delete a subscriber

Overview

This API DELETE call deletes a subscriber.

DELETE https://<hostname>/api/api/relation/Subscriber/{Deletion Subscriber PKID}

Where {Deletion Subscriber PKID} is the ID of the subscriber to delete.

References:

• OpenAPI example for relation/Subscriber/{Deletion Subscriber PKID}

• Model: relation/Subscriber

• API Reference for relation/Subscriber

Using relation/SubscriberPhone/{Removal_Phone_PKID}

Using this API call involves the following tasks:

1. Identify the customer and the customer’s hierarchy.

2. Fetch all details of the subscriber to be deleted.

Step 1: Identify Customer+Customer Hierarchy

1. Fetch the list of customers to populate a drop-down list, and allow the user to select a customer from
the list. <Customer Name>

Refer to (GET) Customers

2. Fetch available hierarchies for the selected customer (<Customer Name>).

Refer to (GET) All Sites Belonging to the Customer

3. Resolve <Customer Hierarchy>.

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

166

ServiceNow-integration.html#/paths/~1api~1relation~1SubscriberPhone~1%7BRemoval_Phone_PKID%7D/delete
ServiceNow-integration.html#/paths/~1api~1relation~1SubscriberPhone~1%7BRemoval_Phone_PKID%7D/delete
ServiceNow-integration.html#/paths/~1api~1relation~1Subscriber~1%7BDeletion%20Subscriber%20PKID%7D/delete
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/relation_Subscriber-Model.html
https://documentation.voss-solutions.com/release_RELEASENUM/html/src/api-ref/relation_Subscriber-API.html

9.2. CUCM OpenAPI Examples

• <Customer Hierarchy> is the entry in the earlier step that ends with the <Customer Name>.

For example, if <Customer Name> is Innovia, the <Customer Hierarchy> will be sys.hcs.CS-P.
CS-NB.Innovia.

Step 2: Fetch all details of the subscriber to be deleted

1. Execute (GET) Subscriber PKID and Name to fetch the following details of all subscribers at the
customer’s hierarchy, and populate the drop-down:

• UserID

• FirstName

• LastName

2. User selects the subscriber to be deleted.

3. Resolve the subscriber PKID of the selected subscriber, to <Deletion Subscriber PKID>

Note: There is no callback for DELETE. You will need to execute a GET call containing data from the
payload to confirm the status of the call, for example:

GET https://<hostname>/api/tool/Transaction/b471aa05-01d5-46c9-981e-685774b645be/

See the response sample output for this DELETE call in the OpenAPI example for rela-
tion/SubscriberPhone/{Removal_Phone_PKID}

Copyright © 2024 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

167

ServiceNow-integration.html#/paths/~1api~1relation~1Subscriber~1%7BDeletion%20Subscriber%20PKID%7D/delete
ServiceNow-integration.html#/paths/~1api~1relation~1Subscriber~1%7BDeletion%20Subscriber%20PKID%7D/delete

Index

V
voss

voss set_debug, 40

168

	Overview
	Introduction
	API Introduction
	API System Concepts
	Hierarchy
	Basic REST
	API Traversal
	Request and Response Patterns

	Anatomy of an API Request
	General Structure of the API
	Format
	Authentication
	Authorization
	HTTP Methods
	PUT Versus PATCH
	API Parameters
	Format
	Configuration Template and Template Name
	Field Display Policy
	Cached
	Resource instance
	Schema and Schema Rules
	List pagination
	List format
	Filter
	Synchronous and Asynchronous
	Tags
	Version Tags

	Filter Parameters for Choices
	API Request Headers
	Admin
	Self-service

	Login and Authorization Tokens
	Non-interactive Login
	Access Profiles
	Time to Live (TTL)
	Account Endpoint
	Logged-in User Details
	Password Change

	Anatomy of an API Response
	API Response Overview
	API Response Header
	Single Resource Response
	Resource List Response
	POST/PUT/DELETE/PATCH Response
	Asynchronous Mutator Transaction Status Callback
	Example of an Asynchronous Mutator Transaction with nowait=true
	Correlation Identifiers
	Example Of A Simple HTTP Server

	Using the API
	Developer Guidelines
	Workflow Tasks
	Developer Tools

	Handling API Fault Responses
	Fault Responses
	Error Messages

	Tool APIs
	Introduction to Tool APIs
	Search and Search Result Export
	Bulk Load API
	Move and Bulk Move
	Data Extract
	Custom Workflows

	Transactions
	List Transactions
	Get Instance Transactions
	Poll Transactions
	Replay Transactions
	Edit and Replay Transactions
	Sub Transactions
	Log Transactions
	Transaction Choices
	Transaction Filters

	API Examples
	API Examples Overview and Conventions
	POST
	GET
	PUT
	DELETE
	Bulk Load Example
	Export Example
	Example Transaction

	Backward Compatibility
	API Backward Compatibility and Import

	General API Reference
	Using the API Reference
	API Schema
	Notifications
	Meta data
	Metadata
	References
	Summary Attributes
	Path
	Model Type
	Actions
	Singleton

	Generic Actions
	Choices Generic Action
	Add Generic Action
	Bulk Update Generic Action
	Clone Generic Action
	Configuration Template Generic Action
	Create Generic Action
	Delete Generic Action
	Execute Generic Action
	Export Generic Action
	Export BulkLoad Template Generic Action
	Field Display Policy Generic Action
	Help Generic Action
	List Generic Action
	Update Generic Action

	Custom Device Connection Actions
	Import
	Test Connect

	Custom Device Actions
	Apply
	Assign
	Do
	Lock
	Promote
	Reset
	Vendor Config
	Wipe
	Update LDAP Authentication
	Update LDAP System

	Other elements
	Data
	Resources
	Schema
	Pagination

	OpenAPI Examples
	Getting Started
	Introduction to Automate OpenAPI Examples
	Overview
	Errors
	Samples
	Content Type
	VOSS Automate API and the OpenAPI Specification Examples

	CUCM OpenAPI Examples
	GET /tool/Macro
	Overview
	(GET) Customers
	(GET) Customers

	(GET) All Sites Belonging to the Customer
	(GET) Directory Numbers
	(GET) Next Available Number
	(GET) Phone Models
	(GET) All phone models currently available to a customer
	(GET) All phone models currently offered to customers by the provider

	(GET) All Phones Belonging to a Customer (with PKIDs)
	(GET) Subscriber PKID and Name
	(GET) All Phones
	(GET) All Phones Belonging to a Subscriber
	(GET) All Phones Without Associated User
	(GET) All DeviceProfiles Without Associated User
	(GET) All Line Details
	(GET) Subscribers Lines
	(GET) Supported Protocols
	(GET) Phone Button Templates for Phone Model
	(GET) Security Profiles for Phone Model
	(GET) Subscriber’s Phones and Services
	(GET) Available Hierarchies of a Customer
	(GET) Usernames at Customer and Downwards
	(GET) User Details
	(GET) Customer Common Phone Configs
	(GET) Available Quick Add Groups
	(GET) Unassociated Phones of Specific Model at Site

	Add a standalone Cisco phone
	Overview
	Using POST AddPhone
	Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy
	Step 2: Provide phone details
	Step 2: Provide line details

	Query parameters
	Request Payload (Body)

	Add a Cisco subscriber
	Overview
	Using POST QuickSubscriber
	Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy
	Step 2: Set lookUpForUser to True in the payload
	Step 3: Resolve user details and credentials
	Step 4: Retrieve the lines to be assigned
	Step 5: Retrieve Quick Add Groups
	Step 6: Select services for the subscriber
	Step 7: Allocate a soft phone for a subscriber
	Step 8: Allocate desk phones for a subscriber

	Query parameters
	Request Payload (Body)

	Reset a CUCM PIN/password and/or CUC PIN
	Overview
	Using POST ResetUCPasswordPinVIEW
	Step 1: Identify Customer+Customer Hierarchy
	Step 2: Define whether the password/PIN reset is for CUCM or CUC
	Step 3: Resolve user details and credentials

	Query parameters
	Request Payload (Body)

	Replace a Cisco phone
	Overview
	Using POST ReplacePhone_VIEW
	Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy
	Step 2: Populate a list of existing phones at the site
	Step 3: Provide replacement phone details

	Query parameters
	Request Payload (Body)

	Associate an existing Cisco device or device profile to subscriber
	Overview
	Using POST GS_AddDeviceToUser_VIEW
	Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy
	Step 2: Retrieve users and choose a user
	Step 3: Assign unassociated Cisco device or UDP

	Query parameters
	Request Payload (Body)

	Disassociate a Cisco phone from a subscriber
	Overview
	Using POST GS_removeDeviceFromUser_VIEW
	Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy
	Step 2: Identify the user and device to disassociate

	Request Payload (Body)

	Move a Cisco subscriber between sites
	Overview
	Using POST UserPhoneMoveUsers_VIEW
	Step 1: Identify Customer+Customer Hierarchy
	Step 2: Identify the subscriber to be moved
	Step 3: Choose the target site
	Step 4: Add new lines or move existing lines
	Step 5: Add new phones or move existing phones
	Step 6: Allocate the default CUC template defined in the site defaults
	Step 7: Hardcode values in the payload

	Query parameters
	Request Payload (Body)

	Modify line data
	Overview
	Using device/cucm/Line/{Line PKID}
	Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy
	Step 2: Resolve the line that needs to be modified, and modify line details

	Query parameters
	Request Payload (Body)

	Modify phone data - line recording details
	Overview
	Using device/cucm/Phone/{Phone PKID}
	Step 1: Identify Customer+Customer Hierarchy and Site+Site Hierarchy
	Step 2: Resolve the phone that needs to be modified, and modify phone details

	Query parameters
	Request Payload (Body)

	Delete a phone
	Overview
	Using relation/SubscriberPhone/{Removal_Phone_PKID}
	Step 1: Identify Customer+Customer Hierarchy
	Step 2: Fetch all details of the phone to be deleted

	Delete a subscriber
	Overview
	Using relation/SubscriberPhone/{Removal_Phone_PKID}
	Step 1: Identify Customer+Customer Hierarchy
	Step 2: Fetch all details of the subscriber to be deleted

	Index

