
VOSS-4-UC
Best Practices Guide

Release 21.1

Sep 02, 2021

Legal Information

Please take careful note of the following legal notices:

• Copyright © 2021 VisionOSS Limited.
All rights reserved.

• VOSS, VisionOSS and VOSS-4-UC are trademarks of VisionOSS Limited.

• No part of this document may be reproduced or transmitted in any form without the prior written permission of
VOSS.

• VOSS does not guarantee that this document is technically correct, complete, or that the product is free from
minor flaws. VOSS endeavors to ensure that the information contained in this document is correct, whilst every
effort is made to ensure the accuracy of such information, VOSS accepts no liability for any loss (however caused)
sustained as a result of any error or omission in the same.

• This document is used entirely at the users own risk. VOSS cannot be held responsible or liable for any damage
to property, loss of income, and or business disruption arising from the use of this document.

• The product capabilities described in this document and the actual capabilities of the product provided by VOSS
are subject to change without notice.

• VOSS reserves the right to publish corrections to this document whenever VOSS deems it necessary.

• All vendor/product names mentioned in this document are registered trademarks and belong to their respective
owners. VOSS does not own, nor is related to, these products and vendors. These terms have been included to
showcase the potential of the VOSS solution and to simplify the deployment of these products with VOSS should
you select to utilize them.

Security Information

This product may contain cryptographic features that may be subject to state and local country laws that govern the import,
export, transfer and use of such features. The provision of this software does not imply that third-party authorization
to import, export, distribute or use encryption in your particular region has been obtained. By using this product, you
agree to comply with all applicable laws and regulations within your region of operation. If you require further assistance,
please contact your dedicated VOSS support person.

i

Contents

1 Deployment 1
1.1 Architecture Offerings . 1

2 Deployment Models and Web Weight Settings 4
2.1 Overview . 4
2.2 Active-Active Web Weights . 4
2.3 Active-StandBy Web Weights . 5

3 Overload Controls 6
3.1 Session Limits . 6
3.2 Throttle Limits . 6
3.3 Configurable Number of Queue Processes . 7

4 Onboarding Customers and Users 9
4.1 Guidance on Planning for Onboarding and Ongoing Operations 9

5 Data Sync 10
5.1 General Sync Principles and Best Practices . 10
5.2 Cisco Unified CM . 14
5.3 Cisco Unity Connection . 17
5.4 LDAP . 18
5.5 Cisco Webex Teams (Spark) . 18

6 Data Collection 20
6.1 Recommended RIS API Data Collector Interval . 20

7 API Performance 21
7.1 API Resource Listing Best Practice . 21
7.2 Long Running API Requests . 22

8 System Maintenance 24
8.1 Transaction Archiving . 24
8.2 Automated Database Cache Cleanup . 24

9 Administration Portal Setup 26
9.1 Navigation - Menu and Landing pages . 26

Index 29

ii

1. Deployment

1.1. Architecture Offerings

VOSS-4-UC offers a range of deployment topologies. The choice of a deployment topology should take into
consideration the advantages and disadvantages of each as shown below.

• Single-node cluster (cluster-of-one/standalone)

• Single-node cluster (cluster-of-one/standalone) with VMWare HA

• Unified Node Cluster Topology

– 3 Node with Web proxies

– 4 Node with Web proxies

– 6 Node with Web proxies

• Modular Cluster Topology (separate Application and Database nodes)

– 3 Database nodes

– 1 - 8 Application Nodes

– Web Proxies

• Cloud deployments

– Azure

– Google Cloud Platform (GCP)

– Support all Standalone, Unified and Modular cluster topologies

• MaaS (Management-as-a-Service)

– VOSS hosted SaaS solution

1

1.1. Architecture Offerings

Topology Pro’s Con’s

Single-node1

• Smallest hardware footprint • No DR
• Less throughput than clus-

ters

Single-node with VMWare HA
• Smallest hardware footprint
• DR available

• Less throughput than clus-
ters

3 Unified Node Cluster
• More throughput than

single-node
• More limitations with DR

scenarios
• More hardware than single-

node

4 Unified Node Cluster
• More DR scenarios sup-

ported
• More throughput than 3

Node

• More hardware than 3
Node

6 Unified Node Cluster
• Typically deployed for multi-

data center deployments
• Support Active/Standby

• Largest hardware footprint

Modular Cluster
• Increased processing ca-

pacity utilization on Applica-
tion Nodes

• Horizontal scaling by
adding more Application
Nodes

• Improved database re-
silience with dedicated
nodes and isolation from
application

• Improved database perfor-
mance by removing applica-
tion load from the primary
database

Cloud Deployment (Azure, GCP)
• Leverage cloud tooling like

proxies (can use instead of
VOSS Web Proxy)

MaaS
• No hardware footprint or in-

frastructure costs
• Fast setup

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

2

1.1. Architecture Offerings

1 This deployment should be concepts-standard-deployment-topologyused for test purposes only.

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

3

2. Deployment Models and Web Weight Settings

2.1. Overview

• The supported deployment models are described in the Install Guide under Chapter 2 Deployment
Topologies.

• Web weights are explained in the Install Guide under Multi Data Center Deployments and Multinode
Installation. The web weight specifies the routing and relative counts of the initial HTTP request from
the Web Proxy to a Unified Node. The initial request could be a request such as a transaction, or for
example a GET request.

• Transactions can be processed on any Active Unified Node - regardless of which Unified Node
processed the initial HTTP request. The transaction log provides the detailed information in the fields
shown below:

– submitter_host_name: the hostname of the application node that scheduled the transaction.

– processor_host_name: the hostname of the application node that processed the transaction
(this value is set once the transaction is processed).

• Note that a sub-transaction can be processed on a different Unified Node than its immediate precedent
in the hierarchy.

• We recommend that you use both Web Proxies. However, the use of only 1 Web Proxy is supported
(and Web Proxy use is optional).

• To display the configured web weights, run the command web weight list at the CLI of each Web
Proxy Node .

• The recommended web weight settings for the various deployment models are shown in the following
sections.

2.2. Active-Active Web Weights

• There are 4 Active Unified Nodes, 2 in each Data Center. The maximum supported Round Trip Time
(RTT) is 10ms.

• WP1: 1 1 0 0

• WP2: 0 0 1 1

This scheme is designed to route the initial HTTP request to the Unified Nodes local to the Web Proxy Node
that forwards the request. If only one Web Proxy (WP) is used, then use the following setting for WP1:

WP1: 1 1 1 1

4

2.3. Active-StandBy Web Weights

This results in some of the initial HTTP requests crossing to the Secondary Data Center, however this has a
minimal impact on system performance.

2.3. Active-StandBy Web Weights

• There are 4 Active Unified Nodes in the Primary Data Center and 2 StandBy Unified Nodes in the
secondary Data Center. The maximum supported RTT is 400ms.

• WP1: 1 1 1 1 0 0

• WP2: 1 1 1 1 0 0

If only Web Proxy 1 (WP1) is used, the default weights provided by the system are sufficient. If Web Proxy 2
or both Web Proxy Nodes are used, change the web weights at Web Proxy 2 to the values noted above.

The logic behind the web weight settings for the Active-StandBy model is that some non-transaction work
may generate a significant number of queries back to the Primary DB. Therefore, processing such work in
the secondary Data Center may result in unacceptably long processing times.

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

5

3. Overload Controls

3.1. Session Limits

The numbers below represent the default and maximum values.

• global administration: 200 (includes non-customer admins as well as service provider and reseller
admins). This limit also includes API clients configured as Admin Users.

• global self-service: 20,000 - This is the total number of self-service users logged into the system - both
active and inactive.

• per customer administration: 10 (this should be set to a lower value in some cases). The Partner must
first “reserve” a number of non-customer admin sessions from the global limit of 200 noted above. The
remaining admins can be allocated to customers. Based on the expected number of customers, the
Partner can then set the per customer admin limit.

For example, if the Partner wishes to “reserve” 20 admin sessions for non-customer use, that would
leave 180 available for customer use. If a total of 40 customers is expected, the Partner should set
the per customer admin limit to no more than 180/40 = 4 (rounded down from 4.5). In this example,
a maximum of 40 x 4 = 160 admin sessions can be allocated to customer-level admins. This would
effectively reserve 200-160 = 40 admins for the Partner to use.

• per customer self-service: 1000

3.2. Throttle Limits

• Admin (by default, this is disabled). We recommend that the Admin throttle is enabled and set to 450
API requests/min. The setting is per Unified Node.

– Service Inventory (SI) Report: Relies on the per-user throttle setting to ensure adequate through-
put.

* For the Active-StandBy deployment model, we highly recommended that the SI report is
configured to run on a specific non-Primary Unified Node (preferably in the Secondary Data
Center as those nodes are likely to have a lower load). This results in faster performance, but
there is not any protection against a single node failure in the middle of an SI report run (not
very likely). The use of a Web Proxy is not recommended here as 25% of the initial requests
are routed to the Primary Unified Node based on the recommended web weight settings at
either Web Proxy.

* For the Active-Active deployment model, you can use a Web Proxy instead. The SI report
would run slower, but this configuration provides protection against a single Unified Node
failure during the SI report run. If a Web Proxy is used, then:

6

3.3. Configurable Number of Queue Processes

· Use Web Proxy 2. This prevents routing to the Primary Unified Node based on the
recommended web weight settings.

· The Web Proxy knows the health of the UN and can route requests accordingly.

• Per User throttle for API Clients:

– Default setting is 20 API req/sec per Active Unified Node. 4 Active Unified Nodes x 20 = 80 API
req/sec (system wide) or 4800 API req/min (system wide). We recommend that you keep this
setting.

– This limit applies to all admin users, but in practice serves to limit API clients. Human admin users
are not likely to create a traffic rate of 80 API req/sec.

• Self-Service throttle. The default setting is 300 API req/min (per Unified Node). APIs for logins and
actions would count against this throttle.

3.3. Configurable Number of Queue Processes

Important: It is strongly advised that VOSS Support is consulted before making changes to the number of
queue processes.

Available commands:

• voss queues <number> - Set the number of queue processes

This command restarts the voss-queue services.

voss queues - Get the number of queue processes

When using these commands, a CLI warning is shown to refer to this documentation:

Warning, updating this setting, without proper consideration of
Best Practices or consultation with VOSS support, can lead to system
instability.
Do you wish to continue?

The number of queue processes is configurable in order to increase transaction throughput and will improve
workload distribution across the cluster, but can only be made after considering other configuration changes
or performance areas. These include:

• Node memory configuration

• Impact on API and indirectly GUI responsiveness

• Number of workers for queue processes on different unified nodes

• Overall load on the primary node (node with primary database responsible for all database updates)

3.3.1. Node Memory

When increasing queue processes, too little memory headroom can lead to out of memory errors on the
unified node, which can cause services to be restarted and in rare situations, can also lead to database
services being stopped.

The suggested required headroom per queue process should be considered as 4GB.

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

7

3.3. Configurable Number of Queue Processes

3.3.2. Impact on API and GUI responsiveness

A balance has to be created between the number of queue processes and API/GUI responsiveness.
Increasing the number of queue processes on all nodes will increase the load on the primary node during high
transaction load and the increased load on the database can lead to degraded API and GUI responsiveness
if the number of queue processes are set too high.

3.3.3. Number of workers per queue process

Note: This consideration applies to the standard topology with unified nodes.

In order to alleviate load on the primary node, it is recommended to set the number of workers to zero. This
will prevent any transactions from being processed on the primary node. This will allow the primary node to
better service

• the higher query load from secondary nodes due to higher transaction load

• API requests requiring database interaction

A special consideration exists with setting the workers to zero on the designated primary node. When the
primary node fails over to a secondary due to some event, the newly elected primary node will not have the
number of queue workers set to zero, which could lead to an increased load on the newly elected primary
that will process transactions, service API requests and service database queries.

Manual intervention will be required to set the number of workers to zero on the newly elected primary or
restore the configured primary node to primary state.

It is recommended that monitoring be set up to automatically provide notifications in case of primary failover.

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

8

4. Onboarding Customers and Users

4.1. Guidance on Planning for Onboarding and Ongoing Opera-
tions

This is a high-level view:

• Number of Parallel operations, for example BL and QAS, for best performance:

– BL: 4x500 (4 Bulk Load sheets in parallel with a maximum of 500 rows per sheet).

– QAS: 5x200 (5 QAS Bulk Load sheets in parallel with a maximum of 200 rows per sheet).

• Recommendations for sync operations:

– We recommend that you schedule sync operations during off-peak hours.

– During business hours, sync operations are slower due to the presence of other work on the
system.

• Scheduler Template settings (20%, 50%, 80%):

– For periods of high self-service and administrative work (including API clients), we recommend
that the template is set to 20%.

– For periods of moderate self-service and administrative work (including API clients), we recom-
mend that the template is set to 50%. This is the value in the system prior to SU-1.

– For periods of low self-service and administrative work (including API clients), set the template to
80%.

– The current implementation only allows you to set 2 of the 3 values, that is a peak and an off-peak
setting.

• In some cases, there are situations where VOSS-4-UC is used for changes. Ad Hoc syncs are best in
this case.

• AS may choose to change CUCM and sync back to VOSS-4-UC. This is where you must schedule
daily off-peak sync operations.

9

5. Data Sync

5.1. General Sync Principles and Best Practices

5.1.1. Sync Overview

VOSS-4-UC provides a number of features for the system to stay in sync with the underlying UC applications,
thereby allowing for the configuration and management of the UC apps outside of VOSS-4-UC when required.

• Cache control policy - this mechanism in the VOSS-4-UC system provides the ability to pull in the latest
live data from the UC application(s) for the entity that you are viewing or at the time that it is needed,
for example before executing a change on that entity; to prevent any overwrite or setting conflict.

For more details on the cache control policy behavior and configuration, see the Data Sync chapter in
the Core Feature Guide.

• Data Sync - This is a workflow that will pull the latest data from the UC apps and update the VOSS-4-UC
cache when ran adhoc or via a schedule. This is typically used for processes like overbuild to pull in
the existing configuration from the UC applications or to pull in other changes made in the UC apps
outside of VOSS-4-UC.

For more information on the sync behavior and configuration, see the Data Sync chapter in the Core
Feature Guide.

• With the cache control policy in place, the need to setup and schedule sync regular syncs should aim
to address any gaps that the cache control policy will not handle. Some of the prime use cases and
guidelines on when a regular or scheduled sync might be required for an entity versus the use of the
cache control policy are as follows (these all assume some level of regular configuration being done to
the UC apps directly outside of VOSS-4-UC):

– If you are adding/removing entities (e.g users, phones, etc) in the UC application(s) directly, then
a sync is required to pull in new entities or remove existing entities.

– If you are modifying key values that appear in the list views in VOSS-4-UC via the applications
directly (e.g changing a user’s name), then an update sync might be required. The list view data
is driven only from the VOSS-4-UC cache so any updates made in the UC apps will not be shown
in VOSS-4-UC until the entity is viewed in VOSS-4-UC (for example, opening that subscriber) or
when an update sync is run.

– Any type of extract that might be run from VOSS-4-UC (file dump, VOSS-4-UC Analytics, billing
feed, etc) would be based on the cached data in VOSS-4-UC. So a sync may be required if those
capabilities are in use and any of the critical settings in those extracts are being managed outside
of VOSS-4-UC.

– External clients accessing VOSS-4-UC via the API have the cached flag available to request
VOSS-4-UC cached data (cached = true) or to have VOSS-4-UC retrieve the latest data from

10

5.1. General Sync Principles and Best Practices

the UC apps before responding (cached = false). So the presence of this external client does
not require a regular sync to be run as it can (and likely should) request the latest data in any
case depending on the use case.

– Any other mods (e.g call forward on a line via the CFwdALL softkey) made on an entity will be
pulled in when the record is viewed so do not necessarily require a sync.

For example, if the only concern is that when executing an update to an entity that the latest current settings
are shown, then the cache control policy handles this without the need for a regularly scheduled update sync.

When the sync is run (manual or via schedule), the hierarchy that the sync is run on will determine where the
items are pulled into. For example, a sync at the customer level will pull data in at customer level, while a
sync at a site will pull data in at the site.

So when setting up the sync, consider the purpose: if the items being pulled in need to be in a site, it might
be more efficient to set up the sync at that level and run it there, as opposed to syncing in at the customer
and then having the move the various elements. This can even be done as a once-off sync and with the use
of model type lists and model instance filters to grab the data relevant for the site.

5.1.2. Data Sync Types

VOSS-4-UC provides the following data sync types:

Data sync type Description

Pull from Device Available to all device types.
• Pull all data from the device
• Pull only the schema from the device (used

for LDAP)
• Pull data from the Change Notification Fea-

ture local data collection

Purge Local Resources Available to all device types.
• Purge data from the cache

Push to Device Available only to Cisco Unified CM devices
• Push data in the cache to the device

Change Notification Sync Available only to Cisco Unified CM devices

Note: A quick import option is available to fetch only summary data that is contained in a list operation
response and not the data for all instances/fields. See Data Sync Overview in the Core Guide for details.

Generally, for all sync types, VOSS-4-UC builds up the lists of entities from both VOSS-4-UC and the device,
and compares them, using the key for the device entity. The key is typically the unique identifier (ID) for the
record in the device we’re syncing with. For example, for Unified CM, the ID is the pkid, which is the internal
Unified CM database ID.

For subscribers, a sync builds up the list of device/cucm/Users in VOSS-4-UC and then requests from
the Unified CM the lists of users it currently has for the comparison. Differences in the lists are handled
according to each sync type.

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

11

5.1. General Sync Principles and Best Practices

Related Topics

• Data Sync Overview in the Core Feature Guide

• Change Notification Feature Overview in the Core Feature Guide

Pull from Device

For sync type Pull from Device, the VOSS-4-UC resource is updated where the same key is present in both
lists. In this case, the device data is the master and the VOSS-4-UC system model data is updated with the
device data.

For example, let’s say new data is added to the Unified CM, so that the VOSS-4-UC system data state for a
Unified CM device/cucm/User does not show instances that are shown on the Unified CM.

In this case, a pull data sync synchronizes the system data with the Unified CM data. For example, a
user’s Department may be updated on the Unified CM, but the update only shows on the system after a
Pull from Device sync. If a user resource is created in Unified CM but not in VOSS-4-UC, this adds the
device/cucm/User instance into VOSS-4-UC at the level the pull sync was run from, for example, at the
customer level.

When deleting a VOSS-4-UC resource from the device, so that the key is in the VOSS-4-UC list but not in
the device list, a pull sync removes the resource in VOSS-4-UC. For example, if the resource is a user in
VOSS-4-UC but not in Unified CM, the pull sync removes the device/cucm/User record in VOSS-4-UC.

To restrict the number of records removed in VOSS-4-UC, ensure you have the following named macro at
the hierarchy where the sync takes place:

PULL_SYNC_DELETE_THRESHOLD_<device_type>

For details, see Pull Sync Delete Threshold topic in the Advanced Configuration Guide.

When pulling device data, for example LDAP users from an LDAP device, the results returned to VOSS-4-UC
depend on the LDAP server configuration. For example, if the returned results exceed the LDAP server
configured maximum, and if the server does not support paging, an appropriate error message is returned.

Push to Device

Sync type Push to Device is available only to Cisco Unified CM device types.

In a Push to Device sync type, devices are synchronized with the VOSS-4-UC system data state, which is
the primary data state.

• When deleting device data from VOSS-4-UC so that the key is in the device list but not in the VOSS-4-
UC list (for example, delete user in VOSS-4-UC), the user is removed from Unified CM. The user will
not exist on the device or on VOSS-4-UC.

• When adding new device data to VOSS-4-UC so that the resource shows instances that are not shown
on the device, a push data sync synchronizes the device data with the VOSS-4-UC data. For example,
adding a device/cucm/User instance to VOSS-4-UC and running a Push to Device sync adds the
user record to Unified CM.

Keys found in both lists are ignored. Existing records are not updated in either direction.

In the device/cucm/User example, if the same user exists on both VOSS-4-UC and on Unified CM, no
update occurs in either direction. Detailed settings may still not match after a Push to Device sync.

Important: When performing a push sync, it is important to consider data dependencies between different
models.

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

12

5.1. General Sync Principles and Best Practices

For example, data dependencies may exist between users and phones in the Cisco Unified CM. In this case,
if a user is associated to a phone (via the associated devices on the user), you can’t add the user if the
phone does not yet exist in in Cisco Unified CM.

On the other hand, for ownerID on the phone, pushing the phone first will fail since the user isn’t in place.

This might mean running the push sync multiple times so it loads in the required order, or you may need to
modify data (such as removing device association) to allow the push sync to succeed.

Note: The keys list sync logic described in this topic implies that in case of a reversion of the Unified
CM to restores/inactive partitions, the end-state of the relevant pkids may differ to their state the last time
VOSS-4-UC was in sync with Unified CM (before a restore), particularly if testing occurred in between. This
means you may, for example, have a user with the same username in both VOSS-4-UC and Unified CM, but
if that user’s pkid in Unified CM now differs to the one in VOSS-4-UC from previous syncs or interactions,
they will be seen as different users even though they have the same usernames.

Change Notification Sync

Sync type Change Notification Sync is available only to Cisco Unified CM device types.

A Change Notification Sync is a pull sync of changes stored in the local collection that is updated by the
Change Notification Collector service.

For more details on Change Notification Sync, see the related topics in Data Sync section of the Core
Feature Guide.

Purge Local Resources

In a Purge Local Resources sync type, all resources or instances of device information that exists in the
system are deleted. Entities in the device are not deleted.

Note: The default purge syncs created when adding a CUCM, CUC, LDAP or CCX server type are disabled
by default. To use the purge sync, the “Remove” check box must first be cleared on the “Disabled Operations”
tab of the relevant sync.

This sync type is typically used when cleaning up the system. The system displays a warning before
executing an enabled purge sync.

See the following sample device type syncs:

• HcsPurge-{{CUCMHostname}}–{{CUCMClusterName}}-DS

• HcsUserPurgeDS-{{CUCMHostname}}–{{CUCMClusterName}}

• HcsPhonePurgeDS-{{CUCMHostname}}–{{CUCMClusterName}}

• HcsPurge-{{CUCXHostname}}–{{CUCXClusterName}}-DS

• PurgeUccx-{{UCCXHostName}}

• HcsLdapUserPurge–{{UniqueID}}

• PurgeSpark{{CustomerName}}

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

13

5.2. Cisco Unified CM

5.1.3. Scheduling Syncs

• When scheduling syncs, avoid too many overlapping syncs at a given time. VOSS-4-UC already blocks
multiple syncs against a given device.

• The best practice is to not have more than 5 syncs running at a given time.

• To avoid load and issues with concurrency, schedule syncs carefully and at intervals when they are
really required. For example, do not run nightly syncs unless it is necessary. Since syncs generally
cover the case where information is changed on the UC apps outside VOSS-4-UC, the level of third
party integration or direct configuration tasks should play a role in the decision to schedule. For details,
refer to the topics on Cisco Unified CM, CUC and LDAP below.

• Since it is possible to limit the number of records processed with a given sync, more predictability can
be obtained with scheduling.

5.2. Cisco Unified CM

5.2.1. Cisco Unified CM Sync

Cisco Unified CM supports two types of sync:

• Regular API sync - utilizing the regular use of LIST and GET API calls to retrieve data; like any other
device sync.

• Change Notification Sync - utilizes a service on the Cisco Unified CM side to pull information about
records that have changed in a given period. Note: Model Instance Filters cannot be used in conjunction
with a Change Notification Sync.

The Change Notification Sync type is generally the most efficient sync type to use, as it minimizes the
amount of data that needs to be retrieved from the Cisco Unified CM (especially for updates).

The Change Notification Sync process works as follows:

VOSS-4-UC retrieves the change records from the Cisco Unified CM on a regular interval (configurable).
For example, this could be every 10 minutes. At the time of a scheduled sync is setup, VOSS-4-UC
processes the change records collected (for example, nightly). VOSS-4-UC then processes the records
accordingly:

– Add - will do a GET API call to retrieve the full record and add it to VOSS-4-UC.

– Update - will do a GET API call to retrieve the full record and update the record in VOSS-4-UC.

– Del - will remove the record from VOSS-4-UC.

So the efficiency on update syncs is because we do not need to do a GET API call for every single
record in the system - only those that changed. In large UC application installations, this can make a
big difference in Update sync times.

5.2.2. Update Sync Operations

A new feature introduced in VOSS-4-UC 17.4 permits the partner to use the Change Notification Feature of
the CUCM to process update sync operations faster. The feature is OFF by default, but can be turned on by
the partner.

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

14

5.2. Cisco Unified CM

The information here provides guidelines for setting up a sync schedule and lists the associated performance
implications. Details on the operation of this feature are provided in other documents such as the Core
Feature Guide. The changes mentioned here are not transactions. As a result, information is not displayed
in the translation log, but rather in the special logs created for this feature.

The guidelines presented here are derived from concepts related to total processing capacity. The total
number of updates processed in a time period is the sum of all of the updates across the customers selected
for update in that time period. In our case, the time period is one hour. In this example, we assume that
each customer has 1000 CUCM-related changes in that hour. The recommendation noted in the table that
follows indicates that 5 customers can run in parallel (concurrently), and therefore a total of 5,000 changes
processed in total.

If the partner exceeds the recommendation of 5 concurrent customers, a performance degradation may
be observed, and the full set of required changes may not complete within that hour. Alternatively, if the
number of changes for any customer is significantly higher than the 1,000 or if the total number of changes is
significantly greater than 5,000, then the concurrency number supported may be less than 5.

If some of the planned changes do not complete within the hour noted in the table below, then those changes
are completed the next time that particular customer is scheduled for a sync. If the number of changes for
any customer is so large that the changes continually exceed those that can be processed in one hour, it will
eventually result in a full sync. For such customers, we advise to schedule within an hour where less than 5
customers execute concurrently.

Configuration Recommendation

Maximum number of concurrent CNF
syn

5

Maximum number of changes pro-
cessed per CNF sync

1,000

CNF sync schedule frequency Once per hour per customer - This is subject to the staggering of
CNF sync across customers.

Staggering of CNF syncs across cus-
tomers

Factor of maximum changes processed and maximum number
of concurrent CNF syncs.

CNF collector frequency Initial recommendation is 15 minutes.

When is Full sync required? Weekends only or when there are CNF alerts prompting for full
sync.

If you experience a significant performance issue, you can turn the feature OFF again. Contact your support
representative if you have any performance concerns.

5.2.3. Staggering of CNF Syncs Across Customers

Below follows an example and considerations:

If a Partner has 20 customers who want to use CNF sync, only schedule a maximum of 5 CNF sync to run
concurrently. This means that syncs would run as follows:

• 1st hour, for example 12:00

Customer 1 to Customer 5

• 2nd hour, for example 13:00

Customer 6 to Customer 10

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

15

5.2. Cisco Unified CM

• 3rd hour, for example 14:00

Customer 11 to Customer 15

• 4th hour, for example 15:00

Customer 16 to Customer 20

• 5th hour, for example 16:00 (Begin repeating customers)

Customer 1 - Customer 5

• and so on.

The preceding example means that the CNF sync schedule per customer must run at 4 hour intervals.
Therefore, there are 6 CNF syncs per customer within a 24 hour window. With each CNF sync processing
up to 1k changes, there are:

• A total of 6k changes processed per customer in a 24 hour window

• A total of 120k changes processed across all 20 customers in a 24 hour window

5.2.4. Recommended CUCM Sync Setups

Cisco Unified CM (CUCM) sync recommendations are covered here.

Bottom Up User Sync

If using bottom up sync into CUCM, the users are added to CUCM via LDAP. In this scenario they do not
appear in VOSS-4-UC in order to be managed until they are synced in.

Note: If you use this sync in a multi-cluster environment, additional guidance on the user sync setup is
provided in the Multi-Cluster Deployments Technical Guide.

• Recommended setup

– Model Type List - device/cucm/User

– Actions - Add/Update/Del all enabled.

– When to use - scheduled. The most frequent this should run is in line with the LDAP->CUCM sync
time (typically once every 24hrs but minimum of every 6hrs or so). The length of this sync should
consider the maximum allowable time for an end user to be in the system in typical business
practices. Edge cases can always be handled in between scheduled syncs by running the sync
manually if required - that is often better than having a very frequent sync that is not typically
needed.

– Events - the different actions (add/update/del) have different post execution events for the device/
cucm/User model type that need to occur. These handle various aspects of the user setup. See
below for a screenshot of the setup for an example:

* Add Operation workflow = UserCucmSyncAdd

* Update Operation workflow = UserCucmSyncUpdate

* Delete Operation workflow = UserCucmSyncRemove

– Change notification should be used for this sync to manage load (except if using a model instance
filter).

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

16

5.3. Cisco Unity Connection

Workflows fields of the event setup on the CUCM User sync:

• Model Type: device/cucm/User

Operation: Add

Phase: Post Execution

Workflow: UserCucmSyncAdd

• Model Type: device/cucm/User

Operation: Update

Phase: Post Execution

Workflow: UserCucmSyncUpdate

• Model Type: device/cucm/User

Operation: Delete

Phase: Post Execution

Workflow: UserCucmSyncRemove

Phone Types and Related Entities

This will force VOSS-4-UC to retrieve the latest phone type data from the CUCM and related entities like
phone button templates, and so on. This is not possible via the change notification in CUCM today.

• Recommended setup:

– Model type list including: device/cucm/PhoneType, device/cucm/PhoneTemplate, de-
vice/cucm/securityProfiles

– Actions - Add/Update/Del all enabled

– When to use - Not scheduled - run ad hoc as needed. This includes post CUCM upgrades,
installation of a new device COP file in CUCM, managing phone button templates, managing
device security profiles. If you are not seeing a phone type of the button template in VOSS-4-UC
that you are expecting, running this sync will likely resolve it.

Other Syncs

Beyond the syncs above, others can be setup to suit specific needs based on the implementation.

Important: In setting up processes that sync any new entities into VOSS-4-UC, these will add the entities
to the hierarchy level of the sync. So this will require the use of overbuild or ad hoc move processes to get
the entities into the right site, for example, if needed (such as users, phones, lines, and so on).

5.3. Cisco Unity Connection

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

17

5.4. LDAP

5.3.1. Cisco Unity Connection Sync

User related services such as Unified Messaging, Alternate Extension, etc. are only imported when the User
is added or if there is a modification done to the User, e.g. First Name, Last Name, Email address, etc.

If services are added directly to the User on Cisco Unity Connection, e.g. when adding Unified Messaging,
this service will not be imported when running the next full import from CUC. To import these services a
Model Type List must be applied to the Data Sync to target the required Model Types. A default Model Type
list CUCXN Overbuild Resources exists for this purpose, which includes the following model types:

• device/cuc/User

• device/cuc/UserPassword

• device/cuc/UserPin

• device/cuc/AlternateExtension

• device/cuc/SmtpDevice

• device/cuc/SmsDevice

• device/cuc/PagerDevice

• device/cuc/PhoneDevice

• device/cuc/HtmlDevice

• device/cuc/Callhandler

• device/cuc/CallhandlerMenuEntry

• device/cuc/CallhandlerTransferOption

• device/cuc/Greeting

• device/cuc/MessageHandler

• device/cuc/ExternalService

• device/cuc/ExternalServiceAccount

5.4. LDAP

5.4.1. LDAP

The LDAP sync process currently only supports regular syncs.

5.5. Cisco Webex Teams (Spark)

5.5.1. Cisco Webex Teams Sync

If Cisco Webex Teams (Spark) is part of the solution and being managed, there are a number of considerations
around sync with Cisco Webex Teams.

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

18

5.5. Cisco Webex Teams (Spark)

The typical setup is that the Cisco Webex Teams users are fully managed by the VOSS-4-UC system so
there is no need for user sync. In this setup the only sync required is to pull in basic system data from Webex
Teams for VOSS-4-UC to utilize in user configuration. A sync for this is added into VOSS-4-UC when a Cisco
Webex Teams Service is added to the system and is executed automatically after Service creation or can be
initiated by an admin as needed:

• SyncSparkRolesLicenses<customername> - Sync of basic data - e.g. licenses and roles, etc.

In an alternate scenario where some element of user management is occurring outside of VOSS-4-UC (for
example, LDAP Connector), then a user sync will be required to pull that data into VOSS-4-UC for further
management. Once the users are synced into VOSS-4-UC, they need to be moved to the appropriate site
with the rest of the end user’s services to be further configured and managed. This move can be done via
the Webex Teams menu item by selecting the users and then using the Action > Move option to move them.

This sync can be initiated by an administrator as needed or if required, a schedule can be setup to run the
sync on a regular interval.

• SyncSpark<customername> - Full sync of Webex Teams (Spark) including user data.

When VOSS-4-UC is integrated with a customer’s user directory, the normal Subscriber management
approach applies, in other words:

• users will synced into VOSS-4-UC at the Customer hierarchy level

• users must be moved to the relevant Site hierarchy level

• once at the correct Site level, Quick Add Subscriber or Advanced Subscriber can be used to enable
services (Webex Teams in this case) for the users

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

19

6. Data Collection

6.1. Recommended RIS API Data Collector Interval

As a guideline to determine the interval that the (RIS) data collector service should poll the Unified CM,
consider that:

• it takes about 14 minutes to collect information for around 200K phones on a cluster

The default value of the RIS API data collector interval: 43200 seconds (12 hours) can be adjusted
accordingly.

Note: Collection processes run in parallel for each Unified CM on VOSS-4-UC.

To adjust the value, refer to the System Monitoring Configuration section in the Advanced Configuration
Guide.

20

7. API Performance

7.1. API Resource Listing Best Practice

This section provides best practices when using API GET requests when listing resources. The best practices
for the use of a number of API request parameters and parameter values are examined.

For further details on API parameters, refer to the API Guide.

The list of API request parameters for resource listing are:

Parameter Description Value Default

skip The list resource offset as a number. 0

limit The maximum number of resources returned. The
maximum value is 2000. If the Range request header
is used, it will override this parameter.

1-2000 50

count Specify if the number of resources should be counted.
If false, the pagination object in the response
shows the total as 0, so no total is calculated and
the API performance is improved.

true, false true

order_by The summary attribute field to sort on. First summary
attribute

direction The direction of the summary attribute field sort
(asc:ascending, desc: descending).

asc, desc asc

summary Only summary data is returned in the data object. true, false true

policy_name Return a model form schema where the Field Dis-
play Policy with name [FDP name] is applied to
it. Use policy with the parameters schema and
format=json.

[FDP name]

cached System will respond with resource information where
the data was obtained from cache. (Functionally only
applicable to device models and data models).

true, false true

Consider the following comments and best practices for the parameters below:

• count: The value of count=true is very expensive in terms of performance, and more so as the size
of the resource grows. The first count query of for example a 36 000 Data Number Inventory resource
can take as long as a minute to return a response. However, subsequent calls should decrease in
execution time.

21

7.2. Long Running API Requests

The value count=true should only be used if it is unavoidable. An alternative is to iterate over pages
(limit=200) until the request returns less than 200 instances, or to simply paginate until no more
resources are returned.

• order_by: no performance change if another summary attribute is specified.

• direction: no performance change if either values asc or desc are used.

• policy_name: the parameter is used by the GUI for display purposes. Timing data shows that the
initial call with this parameters takes longer thank subsequent ones, possibly because of cache priming
after a restart. Subsequent calls shows the execution time is on par with requests that do not include
the parameter.

• summary: depending on the data required by the request, time can be saved if the value
summary=true, so that only the summary data is returned.

• limit: execution time and memory consumption is impacted if the limit value is large.

To summarize, the recommended parameter values for an optimal API list request (GET) are:

• cached=true

• summary=true

• count=false

• policy_name not used

Example results with various parameter values (36 000 Data Number Inventory resource):

count:true, skip:0, policy_name:, limit:200, summary:false in 6.51744103432 s
count:true, skip:0, policy_name:, limit:200, summary:true in 5.6118888855 s
count:false, skip:0, policy_name:, limit:200, summary:false in 1.55350899696 s
count:false, skip:0, policy_name:policy_name=HcsDNInventoryDatFDP, limit:200,

summary:true in 5.17663216591 s
count:false, skip:0, policy_name:, limit:200, summary:true in 1.09510588646 s

7.2. Long Running API Requests

To optimise memory utilization and performance, the system has been configured so that the API server will
manage workers with the following defaults:

• after receiving a restart signal, workers have 100 minutes to finish serving requests

• a random restart interval of between 0 and 600 requests per worker (4 workers per node, 4 nodes in a
cluster)

API best practices is to schedule and then poll transactions, since long running requests can affect recycling.
In other words, preferably short requests and then poll.

7.2.1. Polling Example

To retrieve the status of a given transaction:

GET /api/tool/Transaction/[pkid]/poll/?format=json

The response contains essential status of the transaction, for example:

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

22

7.2. Long Running API Requests

{
[pkid]: {

status: "Success",
href: "/api/tool/Transaction/[pkid]",
description: "Name:RDP-auser1857 Description:RD for auser1857"

}
}

Refer to the topics Poll Transactions and Example of an Asynchronous Mutator Transaction with nowait=true
in the API Guide.

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

23

8. System Maintenance

8.1. Transaction Archiving

The following are considerations when determining the frequency of the transaction archiving schedule to set
up on the system. If a schedule is not set up for transaction archiving, system Alerts will be raised as well as
a warning on the platform CLI login:

TRANSACTION DATABASE MAINTENANCE NOT SCHEDULED

• Run voss transaction count <days> on your system to inspect the number of transactions during a
given period to determine your usage metrics.

Refer to the Database Commands for Transaction Management topic in the Platform Guide for details
on transaction archive command use and scheduling:

– voss transaction delete <days>

– voss transaction export <days>

– voss transaction archive <days>

• Business policies - company policies may drive your choices: the immediate access to transaction logs
for a period of time, security policy on data/audit retention, and so on.

Note: The transaction archive process does mean the logs are not lost, just that they are not
immediately accessible in the administrator graphical interface for searching.

• You can also set up system monitoring thresholds so that you receive alerts via the GUI and SNMP if
the threshold is exceeded - which might indicate you need to review the archive schedule to increase
how frequently is runs.

See the SNMP and VOSS-4-UC System Monitoring Traps topics in the Platform Guide.

8.2. Automated Database Cache Cleanup

From VOSS-4-UC release 19.3.2 onwards, it is now longer necessary to schedule or manually manage the
database cache optimization using the voss trim-cache command.

From release 20.1.1, this command is no longer available. A resource history is now maintained as a series
of resource differences and is automatically optimized.

24

8.2. Automated Database Cache Cleanup

Note: A minimum retention period of 7 days is applied to resource differences in the resource history.

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

25

9. Administration Portal Setup

9.1. Navigation - Menu and Landing pages

VOSS-4-UC provides several tools for customizing the Portal experience to your requirements.

The advanced Admin Portal utilizes two key ways to provide users with the means to navigate around the
system to key features:

• Configurable navigation menus (on the left of the screen)

• Configurable Home page - this is the page you see when logging on or when clicking the Home button

Configuration options to enhance navigation:

• Naming of menus and the landing page - it is recommended that you use terminology that reflect the
tasks users need to perform, such as business process naming for admins, or more technical terms for
advanced users.

• Linking from menus - typically, to the form/view, list, or other system model users require access to for
various tasks.

• Display Policy - for views, or when users select an entity from a list view, which determines the form
layout users see.

• Configuration template - this is applied when a view is accessed from the menu item, or the add action
is selected from a list view. This can drive the entity during the add process. This can also be for visible
fields to act as a default (or a fixed value if the field is read-only) or drive fields hidden by the display
policy to provide fixed values.

• Filtering - both mechanisms provide advanced filtering mechanisms to drive different experiences.
There are two key types of filters:

– Fixed Filter - this is defined on the menu and cannot be seen/changed/removed by the user. The
user is unaware a filter is applied and it is the baseline list view they see. They can apply further
filtering as needed.

– Configurable Filters - these are filters that can be fully or partially defined in the menu for items
pointing to a list. This option gives an interim step between clicking on the menu/landing page
option and getting to a list view. It will pop-up the filter options for the user to enter any filter criteria
they require and it will be pre-populated with any criteria defined in the menu. Once submitted the
list view is rendered using the provided filter criteria. The filter can be seen, changed, or removed
as needed by the user.

See the Core Feature Guide for more information on each of these elements and for configuration steps.
Below we’ll outline some suggested strategies and considerations to utilize to create the most efficient means
for you different users types to get to the key capabilities they need.

26

9.1. Navigation - Menu and Landing pages

The general strategy is that you want to make the most common tasks as quick and easy to get to for the
different user types of the system. We suggest you use these capabilities to create the menu and landing
page experiences you need to suit the different user roles that you set up in the system. In addition, the
capabilities and experience needed for the user roles should be reviewed regularly with the users to look for
additional opportunities to streamline and improve their experience to drive even greater efficiency or evolve
to their changing needs.

Here are some key goals that should be provided through these capabilities.

9.1.1. Quick Access to tasks/searches:

The landing page should be populated with the most common tasks and/or searches that the user will be
performing. This gives one-click access to those tasks/search from a single place and they can always
quickly return via the home link at the top of the page. This makes the experience far easier and more
intuitive for the user and saves them from needing to learn a specific menu structure or where items are to
access. It is front and center and in terms they can easily understand.

Some examples of this:

• The top MACDs they do in the system should be on their landing page and easily accessible - with
appropriate display policies and configuration templates. See the Simplified and Streamlined feature
experience section below for more guidance on this

• Create landing page entries that are saved searches with defined filter criteria for one-click access.
This can save time and effort as well as make the searches available to a wider audience. As an
example of this - List un-registered phones which would be a link to phones with the criteria set to
status starts with Un-Registered. This would the user one click access to unregistered phones in the
system.

• Create landing page entries that have some criteria defined to help guide the user through a search
they frequently do but has varying criteria. This walks them through the search process rather than
going to a list view, to them pull up a filter and define all the criteria each time. For example, find a
phone by user - this can be done with a landing page entry for phone, filter criteria set to ownerid, and
then the user will be prompted to provide the required username and submit. This would give them
one click access to finding a phone when they have a userid to work with.

• If there are more tasks than landing page space, then the menu can provide that access to the more
edge case and deeper functions that the user might need from time to time.

9.1.2. Simplified and Streamlined feature experience

Rather than create a single link for a feature that handles a lot of different scenarios, it can be better to
include multiple menu/landing page entries to the same feature with different display policy, configuration
template, and filter options tailored to a specific use case. This can be a very simple way to create an
experience of the feature that better suits a specific use case resulting in a more intuitive experience and
improve automation. This streamlined experience can also reduce errors or reliance on users to follow a
procedure and enter the right information for different scenarios through the same feature. This can also
allow what would typically be more advanced capabilities to be exposed to lower level admins in a way that
aligns to the business function.

Some examples:

• Create a link for adding SIP trunks as part of a specific 3rd party application integration that is regularly
added. This can link to the SIP Trunk device model, utilize a display policy that hides virtually all
the settings except those require entry - such as IP address and port of the remote system. The

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

27

9.1. Navigation - Menu and Landing pages

configuration template could define all the other technical settings according to that scenario (e.g CSS,
call presentation information, digit manipulation, etc).

• Creating lines for different scenarios - there are a lot of different lines settings and optimizing the
experience for different scenarios can greatly reduce effort and errors in setup. The display policies
can be used to cut the visible fields down to those strictly needed for entry, while the configuration
template can drive many of the detailed settings for the different scenarios. The result is you could add
menu items for lines type A, line type B, etc. This makes it very simple to create these different types
that align to the business task they understand without potential errors of the user deciding the right
settings for the situation. This can even be combined with the filtering capability in the menu/landing
page to separate these line types in the listing for full separation.

• UCM feature management - for some UCM capabilities there is not a specific feature built in VOSS-
4-UC for managing it however they can still be accessed via the device models directly. The default
device model layout is driven by the API definition from Cisco and can often include field names and
order that do not align to the admin experience. This can easily be improved with a display policy to
create the order you want and field labels that suit your needs. These can also be combined with
Configuration Templates again to set defaults or drive hidden values to simplify the input and reduce
errors in setup.

Copyright © 2021 VisionOSS Limited. All rights reserved. We appreciate and value your comments. Email:
doc-feedback@voss-solutions.com

28

Index

V
voss

voss queues, 7
voss transaction archive, 24
voss transaction count, 24
voss transaction delete, 24
voss transaction export, 24

29

	Deployment
	Architecture Offerings

	Deployment Models and Web Weight Settings
	Overview
	Active-Active Web Weights
	Active-StandBy Web Weights

	Overload Controls
	Session Limits
	Throttle Limits
	Configurable Number of Queue Processes

	Onboarding Customers and Users
	Guidance on Planning for Onboarding and Ongoing Operations

	Data Sync
	General Sync Principles and Best Practices
	Cisco Unified CM
	Cisco Unity Connection
	LDAP
	Cisco Webex Teams (Spark)

	Data Collection
	Recommended RIS API Data Collector Interval

	API Performance
	API Resource Listing Best Practice
	Long Running API Requests

	System Maintenance
	Transaction Archiving
	Automated Database Cache Cleanup

	Administration Portal Setup
	Navigation - Menu and Landing pages

	Index

